Metamath Proof Explorer


Theorem nsyld

Description: A negated syllogism deduction. (Contributed by NM, 9-Apr-2005)

Ref Expression
Hypotheses nsyld.1
|- ( ph -> ( ps -> -. ch ) )
nsyld.2
|- ( ph -> ( ta -> ch ) )
Assertion nsyld
|- ( ph -> ( ps -> -. ta ) )

Proof

Step Hyp Ref Expression
1 nsyld.1
 |-  ( ph -> ( ps -> -. ch ) )
2 nsyld.2
 |-  ( ph -> ( ta -> ch ) )
3 2 con3d
 |-  ( ph -> ( -. ch -> -. ta ) )
4 1 3 syld
 |-  ( ph -> ( ps -> -. ta ) )