Metamath Proof Explorer


Theorem nsyli

Description: A negated syllogism inference. (Contributed by NM, 3-May-1994)

Ref Expression
Hypotheses nsyli.1
|- ( ph -> ( ps -> ch ) )
nsyli.2
|- ( th -> -. ch )
Assertion nsyli
|- ( ph -> ( th -> -. ps ) )

Proof

Step Hyp Ref Expression
1 nsyli.1
 |-  ( ph -> ( ps -> ch ) )
2 nsyli.2
 |-  ( th -> -. ch )
3 1 con3d
 |-  ( ph -> ( -. ch -> -. ps ) )
4 2 3 syl5
 |-  ( ph -> ( th -> -. ps ) )