Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
|- X = U. J |
2 |
|
simpl |
|- ( ( J e. Top /\ S C_ X ) -> J e. Top ) |
3 |
1
|
clsss3 |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
4 |
1
|
sscls |
|- ( ( J e. Top /\ S C_ X ) -> S C_ ( ( cls ` J ) ` S ) ) |
5 |
1
|
ntrss |
|- ( ( J e. Top /\ ( ( cls ` J ) ` S ) C_ X /\ S C_ ( ( cls ` J ) ` S ) ) -> ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) ) |
6 |
2 3 4 5
|
syl3anc |
|- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) ) |
7 |
6
|
3adant3 |
|- ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) ) |
8 |
|
sseq2 |
|- ( ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) -> ( ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) <-> ( ( int ` J ) ` S ) C_ (/) ) ) |
9 |
8
|
3ad2ant3 |
|- ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( ( int ` J ) ` S ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) <-> ( ( int ` J ) ` S ) C_ (/) ) ) |
10 |
7 9
|
mpbid |
|- ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( int ` J ) ` S ) C_ (/) ) |
11 |
|
ss0 |
|- ( ( ( int ` J ) ` S ) C_ (/) -> ( ( int ` J ) ` S ) = (/) ) |
12 |
10 11
|
syl |
|- ( ( J e. Top /\ S C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` S ) ) = (/) ) -> ( ( int ` J ) ` S ) = (/) ) |