Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
|- X = U. J |
2 |
|
difss |
|- ( X \ A ) C_ X |
3 |
1
|
ntrval2 |
|- ( ( J e. Top /\ ( X \ A ) C_ X ) -> ( ( int ` J ) ` ( X \ A ) ) = ( X \ ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) |
4 |
2 3
|
mpan2 |
|- ( J e. Top -> ( ( int ` J ) ` ( X \ A ) ) = ( X \ ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) |
5 |
4
|
adantr |
|- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` ( X \ A ) ) = ( X \ ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) |
6 |
|
simpr |
|- ( ( J e. Top /\ A C_ X ) -> A C_ X ) |
7 |
|
dfss4 |
|- ( A C_ X <-> ( X \ ( X \ A ) ) = A ) |
8 |
6 7
|
sylib |
|- ( ( J e. Top /\ A C_ X ) -> ( X \ ( X \ A ) ) = A ) |
9 |
8
|
fveq2d |
|- ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) = ( ( cls ` J ) ` A ) ) |
10 |
9
|
difeq2d |
|- ( ( J e. Top /\ A C_ X ) -> ( X \ ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) = ( X \ ( ( cls ` J ) ` A ) ) ) |
11 |
5 10
|
eqtrd |
|- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` ( X \ A ) ) = ( X \ ( ( cls ` J ) ` A ) ) ) |