Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
|- X = U. J |
2 |
|
inss1 |
|- ( A i^i B ) C_ A |
3 |
1
|
ntrss |
|- ( ( J e. Top /\ A C_ X /\ ( A i^i B ) C_ A ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` A ) ) |
4 |
2 3
|
mp3an3 |
|- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` A ) ) |
5 |
4
|
3adant3 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` A ) ) |
6 |
|
inss2 |
|- ( A i^i B ) C_ B |
7 |
1
|
ntrss |
|- ( ( J e. Top /\ B C_ X /\ ( A i^i B ) C_ B ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` B ) ) |
8 |
6 7
|
mp3an3 |
|- ( ( J e. Top /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` B ) ) |
9 |
8
|
3adant2 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( int ` J ) ` B ) ) |
10 |
5 9
|
ssind |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) C_ ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) ) |
11 |
|
simp1 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> J e. Top ) |
12 |
|
ssinss1 |
|- ( A C_ X -> ( A i^i B ) C_ X ) |
13 |
12
|
3ad2ant2 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( A i^i B ) C_ X ) |
14 |
1
|
ntropn |
|- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` A ) e. J ) |
15 |
14
|
3adant3 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` A ) e. J ) |
16 |
1
|
ntropn |
|- ( ( J e. Top /\ B C_ X ) -> ( ( int ` J ) ` B ) e. J ) |
17 |
16
|
3adant2 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` B ) e. J ) |
18 |
|
inopn |
|- ( ( J e. Top /\ ( ( int ` J ) ` A ) e. J /\ ( ( int ` J ) ` B ) e. J ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) e. J ) |
19 |
11 15 17 18
|
syl3anc |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) e. J ) |
20 |
|
inss1 |
|- ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( ( int ` J ) ` A ) |
21 |
1
|
ntrss2 |
|- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` A ) C_ A ) |
22 |
21
|
3adant3 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` A ) C_ A ) |
23 |
20 22
|
sstrid |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ A ) |
24 |
|
inss2 |
|- ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( ( int ` J ) ` B ) |
25 |
1
|
ntrss2 |
|- ( ( J e. Top /\ B C_ X ) -> ( ( int ` J ) ` B ) C_ B ) |
26 |
25
|
3adant2 |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` B ) C_ B ) |
27 |
24 26
|
sstrid |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ B ) |
28 |
23 27
|
ssind |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( A i^i B ) ) |
29 |
1
|
ssntr |
|- ( ( ( J e. Top /\ ( A i^i B ) C_ X ) /\ ( ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) e. J /\ ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( A i^i B ) ) ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( ( int ` J ) ` ( A i^i B ) ) ) |
30 |
11 13 19 28 29
|
syl22anc |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) C_ ( ( int ` J ) ` ( A i^i B ) ) ) |
31 |
10 30
|
eqssd |
|- ( ( J e. Top /\ A C_ X /\ B C_ X ) -> ( ( int ` J ) ` ( A i^i B ) ) = ( ( ( int ` J ) ` A ) i^i ( ( int ` J ) ` B ) ) ) |