| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ntrivcvgmullem.1 | 
							 |-  Z = ( ZZ>= ` M )  | 
						
						
							| 2 | 
							
								
							 | 
							ntrivcvgmullem.2 | 
							 |-  ( ph -> N e. Z )  | 
						
						
							| 3 | 
							
								
							 | 
							ntrivcvgmullem.3 | 
							 |-  ( ph -> P e. Z )  | 
						
						
							| 4 | 
							
								
							 | 
							ntrivcvgmullem.4 | 
							 |-  ( ph -> X =/= 0 )  | 
						
						
							| 5 | 
							
								
							 | 
							ntrivcvgmullem.5 | 
							 |-  ( ph -> Y =/= 0 )  | 
						
						
							| 6 | 
							
								
							 | 
							ntrivcvgmullem.6 | 
							 |-  ( ph -> seq N ( x. , F ) ~~> X )  | 
						
						
							| 7 | 
							
								
							 | 
							ntrivcvgmullem.7 | 
							 |-  ( ph -> seq P ( x. , G ) ~~> Y )  | 
						
						
							| 8 | 
							
								
							 | 
							ntrivcvgmullem.8 | 
							 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )  | 
						
						
							| 9 | 
							
								
							 | 
							ntrivcvgmullem.9 | 
							 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC )  | 
						
						
							| 10 | 
							
								
							 | 
							ntrivcvgmullem.a | 
							 |-  ( ph -> N <_ P )  | 
						
						
							| 11 | 
							
								
							 | 
							ntrivcvgmullem.b | 
							 |-  ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( ZZ>= ` N ) = ( ZZ>= ` N )  | 
						
						
							| 13 | 
							
								
							 | 
							uzssz | 
							 |-  ( ZZ>= ` M ) C_ ZZ  | 
						
						
							| 14 | 
							
								1 13
							 | 
							eqsstri | 
							 |-  Z C_ ZZ  | 
						
						
							| 15 | 
							
								14 2
							 | 
							sselid | 
							 |-  ( ph -> N e. ZZ )  | 
						
						
							| 16 | 
							
								14 3
							 | 
							sselid | 
							 |-  ( ph -> P e. ZZ )  | 
						
						
							| 17 | 
							
								
							 | 
							eluz | 
							 |-  ( ( N e. ZZ /\ P e. ZZ ) -> ( P e. ( ZZ>= ` N ) <-> N <_ P ) )  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							syl2anc | 
							 |-  ( ph -> ( P e. ( ZZ>= ` N ) <-> N <_ P ) )  | 
						
						
							| 19 | 
							
								10 18
							 | 
							mpbird | 
							 |-  ( ph -> P e. ( ZZ>= ` N ) )  | 
						
						
							| 20 | 
							
								1
							 | 
							uztrn2 | 
							 |-  ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z )  | 
						
						
							| 21 | 
							
								2 20
							 | 
							sylan | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> k e. Z )  | 
						
						
							| 22 | 
							
								21 8
							 | 
							syldan | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( F ` k ) e. CC )  | 
						
						
							| 23 | 
							
								12 19 6 4 22
							 | 
							ntrivcvgtail | 
							 |-  ( ph -> ( ( ~~> ` seq P ( x. , F ) ) =/= 0 /\ seq P ( x. , F ) ~~> ( ~~> ` seq P ( x. , F ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							simprd | 
							 |-  ( ph -> seq P ( x. , F ) ~~> ( ~~> ` seq P ( x. , F ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							climcl | 
							 |-  ( seq P ( x. , F ) ~~> ( ~~> ` seq P ( x. , F ) ) -> ( ~~> ` seq P ( x. , F ) ) e. CC )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( ph -> ( ~~> ` seq P ( x. , F ) ) e. CC )  | 
						
						
							| 27 | 
							
								
							 | 
							climcl | 
							 |-  ( seq P ( x. , G ) ~~> Y -> Y e. CC )  | 
						
						
							| 28 | 
							
								7 27
							 | 
							syl | 
							 |-  ( ph -> Y e. CC )  | 
						
						
							| 29 | 
							
								23
							 | 
							simpld | 
							 |-  ( ph -> ( ~~> ` seq P ( x. , F ) ) =/= 0 )  | 
						
						
							| 30 | 
							
								26 28 29 5
							 | 
							mulne0d | 
							 |-  ( ph -> ( ( ~~> ` seq P ( x. , F ) ) x. Y ) =/= 0 )  | 
						
						
							| 31 | 
							
								
							 | 
							eqid | 
							 |-  ( ZZ>= ` P ) = ( ZZ>= ` P )  | 
						
						
							| 32 | 
							
								
							 | 
							seqex | 
							 |-  seq P ( x. , H ) e. _V  | 
						
						
							| 33 | 
							
								32
							 | 
							a1i | 
							 |-  ( ph -> seq P ( x. , H ) e. _V )  | 
						
						
							| 34 | 
							
								1
							 | 
							uztrn2 | 
							 |-  ( ( P e. Z /\ k e. ( ZZ>= ` P ) ) -> k e. Z )  | 
						
						
							| 35 | 
							
								3 34
							 | 
							sylan | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` P ) ) -> k e. Z )  | 
						
						
							| 36 | 
							
								35 8
							 | 
							syldan | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` P ) ) -> ( F ` k ) e. CC )  | 
						
						
							| 37 | 
							
								31 16 36
							 | 
							prodf | 
							 |-  ( ph -> seq P ( x. , F ) : ( ZZ>= ` P ) --> CC )  | 
						
						
							| 38 | 
							
								37
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` P ) ) -> ( seq P ( x. , F ) ` j ) e. CC )  | 
						
						
							| 39 | 
							
								35 9
							 | 
							syldan | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` P ) ) -> ( G ` k ) e. CC )  | 
						
						
							| 40 | 
							
								31 16 39
							 | 
							prodf | 
							 |-  ( ph -> seq P ( x. , G ) : ( ZZ>= ` P ) --> CC )  | 
						
						
							| 41 | 
							
								40
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` P ) ) -> ( seq P ( x. , G ) ` j ) e. CC )  | 
						
						
							| 42 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` P ) ) -> j e. ( ZZ>= ` P ) )  | 
						
						
							| 43 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( ph /\ j e. ( ZZ>= ` P ) ) /\ k e. ( P ... j ) ) -> ph )  | 
						
						
							| 44 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` P ) ) -> P e. Z )  | 
						
						
							| 45 | 
							
								
							 | 
							elfzuz | 
							 |-  ( k e. ( P ... j ) -> k e. ( ZZ>= ` P ) )  | 
						
						
							| 46 | 
							
								44 45 34
							 | 
							syl2an | 
							 |-  ( ( ( ph /\ j e. ( ZZ>= ` P ) ) /\ k e. ( P ... j ) ) -> k e. Z )  | 
						
						
							| 47 | 
							
								43 46 8
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ j e. ( ZZ>= ` P ) ) /\ k e. ( P ... j ) ) -> ( F ` k ) e. CC )  | 
						
						
							| 48 | 
							
								43 46 9
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ j e. ( ZZ>= ` P ) ) /\ k e. ( P ... j ) ) -> ( G ` k ) e. CC )  | 
						
						
							| 49 | 
							
								43 46 11
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ j e. ( ZZ>= ` P ) ) /\ k e. ( P ... j ) ) -> ( H ` k ) = ( ( F ` k ) x. ( G ` k ) ) )  | 
						
						
							| 50 | 
							
								42 47 48 49
							 | 
							prodfmul | 
							 |-  ( ( ph /\ j e. ( ZZ>= ` P ) ) -> ( seq P ( x. , H ) ` j ) = ( ( seq P ( x. , F ) ` j ) x. ( seq P ( x. , G ) ` j ) ) )  | 
						
						
							| 51 | 
							
								31 16 24 33 7 38 41 50
							 | 
							climmul | 
							 |-  ( ph -> seq P ( x. , H ) ~~> ( ( ~~> ` seq P ( x. , F ) ) x. Y ) )  | 
						
						
							| 52 | 
							
								
							 | 
							ovex | 
							 |-  ( ( ~~> ` seq P ( x. , F ) ) x. Y ) e. _V  | 
						
						
							| 53 | 
							
								
							 | 
							neeq1 | 
							 |-  ( w = ( ( ~~> ` seq P ( x. , F ) ) x. Y ) -> ( w =/= 0 <-> ( ( ~~> ` seq P ( x. , F ) ) x. Y ) =/= 0 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							breq2 | 
							 |-  ( w = ( ( ~~> ` seq P ( x. , F ) ) x. Y ) -> ( seq P ( x. , H ) ~~> w <-> seq P ( x. , H ) ~~> ( ( ~~> ` seq P ( x. , F ) ) x. Y ) ) )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							anbi12d | 
							 |-  ( w = ( ( ~~> ` seq P ( x. , F ) ) x. Y ) -> ( ( w =/= 0 /\ seq P ( x. , H ) ~~> w ) <-> ( ( ( ~~> ` seq P ( x. , F ) ) x. Y ) =/= 0 /\ seq P ( x. , H ) ~~> ( ( ~~> ` seq P ( x. , F ) ) x. Y ) ) ) )  | 
						
						
							| 56 | 
							
								52 55
							 | 
							spcev | 
							 |-  ( ( ( ( ~~> ` seq P ( x. , F ) ) x. Y ) =/= 0 /\ seq P ( x. , H ) ~~> ( ( ~~> ` seq P ( x. , F ) ) x. Y ) ) -> E. w ( w =/= 0 /\ seq P ( x. , H ) ~~> w ) )  | 
						
						
							| 57 | 
							
								30 51 56
							 | 
							syl2anc | 
							 |-  ( ph -> E. w ( w =/= 0 /\ seq P ( x. , H ) ~~> w ) )  | 
						
						
							| 58 | 
							
								
							 | 
							seqeq1 | 
							 |-  ( q = P -> seq q ( x. , H ) = seq P ( x. , H ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							breq1d | 
							 |-  ( q = P -> ( seq q ( x. , H ) ~~> w <-> seq P ( x. , H ) ~~> w ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							anbi2d | 
							 |-  ( q = P -> ( ( w =/= 0 /\ seq q ( x. , H ) ~~> w ) <-> ( w =/= 0 /\ seq P ( x. , H ) ~~> w ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							exbidv | 
							 |-  ( q = P -> ( E. w ( w =/= 0 /\ seq q ( x. , H ) ~~> w ) <-> E. w ( w =/= 0 /\ seq P ( x. , H ) ~~> w ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							rspcev | 
							 |-  ( ( P e. Z /\ E. w ( w =/= 0 /\ seq P ( x. , H ) ~~> w ) ) -> E. q e. Z E. w ( w =/= 0 /\ seq q ( x. , H ) ~~> w ) )  | 
						
						
							| 63 | 
							
								3 57 62
							 | 
							syl2anc | 
							 |-  ( ph -> E. q e. Z E. w ( w =/= 0 /\ seq q ( x. , H ) ~~> w ) )  |