| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ntrivcvgn0.1 | 
							 |-  Z = ( ZZ>= ` M )  | 
						
						
							| 2 | 
							
								
							 | 
							ntrivcvgn0.2 | 
							 |-  ( ph -> M e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							ntrivcvgn0.3 | 
							 |-  ( ph -> seq M ( x. , F ) ~~> X )  | 
						
						
							| 4 | 
							
								
							 | 
							ntrivcvgn0.4 | 
							 |-  ( ph -> X =/= 0 )  | 
						
						
							| 5 | 
							
								2
							 | 
							uzidd | 
							 |-  ( ph -> M e. ( ZZ>= ` M ) )  | 
						
						
							| 6 | 
							
								5 1
							 | 
							eleqtrrdi | 
							 |-  ( ph -> M e. Z )  | 
						
						
							| 7 | 
							
								
							 | 
							climrel | 
							 |-  Rel ~~>  | 
						
						
							| 8 | 
							
								7
							 | 
							brrelex2i | 
							 |-  ( seq M ( x. , F ) ~~> X -> X e. _V )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							syl | 
							 |-  ( ph -> X e. _V )  | 
						
						
							| 10 | 
							
								4 3
							 | 
							jca | 
							 |-  ( ph -> ( X =/= 0 /\ seq M ( x. , F ) ~~> X ) )  | 
						
						
							| 11 | 
							
								
							 | 
							neeq1 | 
							 |-  ( y = X -> ( y =/= 0 <-> X =/= 0 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							breq2 | 
							 |-  ( y = X -> ( seq M ( x. , F ) ~~> y <-> seq M ( x. , F ) ~~> X ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							anbi12d | 
							 |-  ( y = X -> ( ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) <-> ( X =/= 0 /\ seq M ( x. , F ) ~~> X ) ) )  | 
						
						
							| 14 | 
							
								9 10 13
							 | 
							spcedv | 
							 |-  ( ph -> E. y ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) )  | 
						
						
							| 15 | 
							
								
							 | 
							seqeq1 | 
							 |-  ( n = M -> seq n ( x. , F ) = seq M ( x. , F ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							breq1d | 
							 |-  ( n = M -> ( seq n ( x. , F ) ~~> y <-> seq M ( x. , F ) ~~> y ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							anbi2d | 
							 |-  ( n = M -> ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) <-> ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							exbidv | 
							 |-  ( n = M -> ( E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) <-> E. y ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							rspcev | 
							 |-  ( ( M e. Z /\ E. y ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) ) -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) )  | 
						
						
							| 20 | 
							
								6 14 19
							 | 
							syl2anc | 
							 |-  ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) )  |