Step |
Hyp |
Ref |
Expression |
1 |
|
ntrivcvgn0.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
ntrivcvgn0.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
ntrivcvgn0.3 |
|- ( ph -> seq M ( x. , F ) ~~> X ) |
4 |
|
ntrivcvgn0.4 |
|- ( ph -> X =/= 0 ) |
5 |
2
|
uzidd |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
6 |
5 1
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
7 |
|
climrel |
|- Rel ~~> |
8 |
7
|
brrelex2i |
|- ( seq M ( x. , F ) ~~> X -> X e. _V ) |
9 |
3 8
|
syl |
|- ( ph -> X e. _V ) |
10 |
4 3
|
jca |
|- ( ph -> ( X =/= 0 /\ seq M ( x. , F ) ~~> X ) ) |
11 |
|
neeq1 |
|- ( y = X -> ( y =/= 0 <-> X =/= 0 ) ) |
12 |
|
breq2 |
|- ( y = X -> ( seq M ( x. , F ) ~~> y <-> seq M ( x. , F ) ~~> X ) ) |
13 |
11 12
|
anbi12d |
|- ( y = X -> ( ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) <-> ( X =/= 0 /\ seq M ( x. , F ) ~~> X ) ) ) |
14 |
9 10 13
|
spcedv |
|- ( ph -> E. y ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) ) |
15 |
|
seqeq1 |
|- ( n = M -> seq n ( x. , F ) = seq M ( x. , F ) ) |
16 |
15
|
breq1d |
|- ( n = M -> ( seq n ( x. , F ) ~~> y <-> seq M ( x. , F ) ~~> y ) ) |
17 |
16
|
anbi2d |
|- ( n = M -> ( ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) <-> ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) ) ) |
18 |
17
|
exbidv |
|- ( n = M -> ( E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) <-> E. y ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) ) ) |
19 |
18
|
rspcev |
|- ( ( M e. Z /\ E. y ( y =/= 0 /\ seq M ( x. , F ) ~~> y ) ) -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |
20 |
6 14 19
|
syl2anc |
|- ( ph -> E. n e. Z E. y ( y =/= 0 /\ seq n ( x. , F ) ~~> y ) ) |