Metamath Proof Explorer


Theorem ntrss2

Description: A subset includes its interior. (Contributed by NM, 3-Oct-2007) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1
|- X = U. J
Assertion ntrss2
|- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) C_ S )

Proof

Step Hyp Ref Expression
1 clscld.1
 |-  X = U. J
2 1 ntrval
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) = U. ( J i^i ~P S ) )
3 inss2
 |-  ( J i^i ~P S ) C_ ~P S
4 3 unissi
 |-  U. ( J i^i ~P S ) C_ U. ~P S
5 unipw
 |-  U. ~P S = S
6 4 5 sseqtri
 |-  U. ( J i^i ~P S ) C_ S
7 2 6 eqsstrdi
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) C_ S )