Description: The interior of a subset of a topological space is included in the space. (Contributed by NM, 1-Oct-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clscld.1 | |- X = U. J |
|
Assertion | ntrss3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) C_ X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | |- X = U. J |
|
2 | 1 | ntropn | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) e. J ) |
3 | 1 | eltopss | |- ( ( J e. Top /\ ( ( int ` J ) ` S ) e. J ) -> ( ( int ` J ) ` S ) C_ X ) |
4 | 2 3 | syldan | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) C_ X ) |