Metamath Proof Explorer


Theorem ntrss3

Description: The interior of a subset of a topological space is included in the space. (Contributed by NM, 1-Oct-2007)

Ref Expression
Hypothesis clscld.1
|- X = U. J
Assertion ntrss3
|- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) C_ X )

Proof

Step Hyp Ref Expression
1 clscld.1
 |-  X = U. J
2 1 ntropn
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) e. J )
3 1 eltopss
 |-  ( ( J e. Top /\ ( ( int ` J ) ` S ) e. J ) -> ( ( int ` J ) ` S ) C_ X )
4 2 3 syldan
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) C_ X )