Description: The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clscld.1 | |- X = U. J |
|
Assertion | ntrtop | |- ( J e. Top -> ( ( int ` J ) ` X ) = X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | |- X = U. J |
|
2 | 1 | topopn | |- ( J e. Top -> X e. J ) |
3 | ssid | |- X C_ X |
|
4 | 1 | isopn3 | |- ( ( J e. Top /\ X C_ X ) -> ( X e. J <-> ( ( int ` J ) ` X ) = X ) ) |
5 | 3 4 | mpan2 | |- ( J e. Top -> ( X e. J <-> ( ( int ` J ) ` X ) = X ) ) |
6 | 2 5 | mpbid | |- ( J e. Top -> ( ( int ` J ) ` X ) = X ) |