Metamath Proof Explorer


Theorem ntrtop

Description: The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006)

Ref Expression
Hypothesis clscld.1
|- X = U. J
Assertion ntrtop
|- ( J e. Top -> ( ( int ` J ) ` X ) = X )

Proof

Step Hyp Ref Expression
1 clscld.1
 |-  X = U. J
2 1 topopn
 |-  ( J e. Top -> X e. J )
3 ssid
 |-  X C_ X
4 1 isopn3
 |-  ( ( J e. Top /\ X C_ X ) -> ( X e. J <-> ( ( int ` J ) ` X ) = X ) )
5 3 4 mpan2
 |-  ( J e. Top -> ( X e. J <-> ( ( int ` J ) ` X ) = X ) )
6 2 5 mpbid
 |-  ( J e. Top -> ( ( int ` J ) ` X ) = X )