Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A C_ RR /\ ( vol* ` A ) = 0 ) -> A C_ RR ) |
2 |
|
elpwi |
|- ( x e. ~P RR -> x C_ RR ) |
3 |
|
inss2 |
|- ( x i^i A ) C_ A |
4 |
|
ovolssnul |
|- ( ( ( x i^i A ) C_ A /\ A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( x i^i A ) ) = 0 ) |
5 |
3 4
|
mp3an1 |
|- ( ( A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( x i^i A ) ) = 0 ) |
6 |
5
|
adantr |
|- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x i^i A ) ) = 0 ) |
7 |
6
|
oveq1d |
|- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) = ( 0 + ( vol* ` ( x \ A ) ) ) ) |
8 |
|
difss |
|- ( x \ A ) C_ x |
9 |
|
ovolsscl |
|- ( ( ( x \ A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
10 |
8 9
|
mp3an1 |
|- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
11 |
10
|
adantl |
|- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ A ) ) e. RR ) |
12 |
11
|
recnd |
|- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ A ) ) e. CC ) |
13 |
12
|
addid2d |
|- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( 0 + ( vol* ` ( x \ A ) ) ) = ( vol* ` ( x \ A ) ) ) |
14 |
7 13
|
eqtrd |
|- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) = ( vol* ` ( x \ A ) ) ) |
15 |
|
simprl |
|- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> x C_ RR ) |
16 |
|
ovolss |
|- ( ( ( x \ A ) C_ x /\ x C_ RR ) -> ( vol* ` ( x \ A ) ) <_ ( vol* ` x ) ) |
17 |
8 15 16
|
sylancr |
|- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ A ) ) <_ ( vol* ` x ) ) |
18 |
14 17
|
eqbrtrd |
|- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) |
19 |
18
|
expr |
|- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ x C_ RR ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
20 |
2 19
|
sylan2 |
|- ( ( ( A C_ RR /\ ( vol* ` A ) = 0 ) /\ x e. ~P RR ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
21 |
20
|
ralrimiva |
|- ( ( A C_ RR /\ ( vol* ` A ) = 0 ) -> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
22 |
|
ismbl2 |
|- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) |
23 |
1 21 22
|
sylanbrc |
|- ( ( A C_ RR /\ ( vol* ` A ) = 0 ) -> A e. dom vol ) |