Metamath Proof Explorer


Theorem num0h

Description: Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses numnncl.1
|- T e. NN0
numnncl.2
|- A e. NN0
Assertion num0h
|- A = ( ( T x. 0 ) + A )

Proof

Step Hyp Ref Expression
1 numnncl.1
 |-  T e. NN0
2 numnncl.2
 |-  A e. NN0
3 1 nn0cni
 |-  T e. CC
4 3 mul01i
 |-  ( T x. 0 ) = 0
5 4 oveq1i
 |-  ( ( T x. 0 ) + A ) = ( 0 + A )
6 2 nn0cni
 |-  A e. CC
7 6 addid2i
 |-  ( 0 + A ) = A
8 5 7 eqtr2i
 |-  A = ( ( T x. 0 ) + A )