Description: Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | numnncl.1 | |- T e. NN0 |
|
numnncl.2 | |- A e. NN0 |
||
Assertion | num0h | |- A = ( ( T x. 0 ) + A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numnncl.1 | |- T e. NN0 |
|
2 | numnncl.2 | |- A e. NN0 |
|
3 | 1 | nn0cni | |- T e. CC |
4 | 3 | mul01i | |- ( T x. 0 ) = 0 |
5 | 4 | oveq1i | |- ( ( T x. 0 ) + A ) = ( 0 + A ) |
6 | 2 | nn0cni | |- A e. CC |
7 | 6 | addid2i | |- ( 0 + A ) = A |
8 | 5 7 | eqtr2i | |- A = ( ( T x. 0 ) + A ) |