| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwlk1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
numclwlk1.c |
|- C = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = X /\ ( ( 2nd ` w ) ` ( N - 2 ) ) = X ) } |
| 3 |
|
numclwlk1.f |
|- F = { w e. ( ClWalks ` G ) | ( ( # ` ( 1st ` w ) ) = ( N - 2 ) /\ ( ( 2nd ` w ) ` 0 ) = X ) } |
| 4 |
|
uzp1 |
|- ( N e. ( ZZ>= ` 2 ) -> ( N = 2 \/ N e. ( ZZ>= ` ( 2 + 1 ) ) ) ) |
| 5 |
1 2 3
|
numclwlk1lem1 |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N = 2 ) ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) |
| 6 |
5
|
expcom |
|- ( ( X e. V /\ N = 2 ) -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) |
| 7 |
6
|
expcom |
|- ( N = 2 -> ( X e. V -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) ) |
| 8 |
1 2 3
|
numclwlk1lem2 |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) |
| 9 |
8
|
expcom |
|- ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) |
| 10 |
9
|
expcom |
|- ( N e. ( ZZ>= ` 3 ) -> ( X e. V -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) ) |
| 11 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 12 |
11
|
fveq2i |
|- ( ZZ>= ` ( 2 + 1 ) ) = ( ZZ>= ` 3 ) |
| 13 |
10 12
|
eleq2s |
|- ( N e. ( ZZ>= ` ( 2 + 1 ) ) -> ( X e. V -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) ) |
| 14 |
7 13
|
jaoi |
|- ( ( N = 2 \/ N e. ( ZZ>= ` ( 2 + 1 ) ) ) -> ( X e. V -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) ) |
| 15 |
4 14
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( X e. V -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) ) |
| 16 |
15
|
impcom |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) ) |
| 17 |
16
|
impcom |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 2 ) ) ) -> ( # ` C ) = ( K x. ( # ` F ) ) ) |