Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk.v |
|- V = ( Vtx ` G ) |
2 |
|
numclwwlk.q |
|- Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) |
3 |
|
numclwwlk.h |
|- H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) |
4 |
|
numclwwlk.r |
|- R = ( x e. ( X H ( N + 2 ) ) |-> ( x prefix ( N + 1 ) ) ) |
5 |
|
eleq1w |
|- ( y = x -> ( y e. ( X H ( N + 2 ) ) <-> x e. ( X H ( N + 2 ) ) ) ) |
6 |
|
fveq2 |
|- ( y = x -> ( R ` y ) = ( R ` x ) ) |
7 |
|
oveq1 |
|- ( y = x -> ( y prefix ( N + 1 ) ) = ( x prefix ( N + 1 ) ) ) |
8 |
6 7
|
eqeq12d |
|- ( y = x -> ( ( R ` y ) = ( y prefix ( N + 1 ) ) <-> ( R ` x ) = ( x prefix ( N + 1 ) ) ) ) |
9 |
5 8
|
imbi12d |
|- ( y = x -> ( ( y e. ( X H ( N + 2 ) ) -> ( R ` y ) = ( y prefix ( N + 1 ) ) ) <-> ( x e. ( X H ( N + 2 ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) ) ) |
10 |
9
|
imbi2d |
|- ( y = x -> ( ( ( X e. V /\ N e. NN ) -> ( y e. ( X H ( N + 2 ) ) -> ( R ` y ) = ( y prefix ( N + 1 ) ) ) ) <-> ( ( X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) ) ) ) |
11 |
1 2 3 4
|
numclwlk2lem2fv |
|- ( ( X e. V /\ N e. NN ) -> ( y e. ( X H ( N + 2 ) ) -> ( R ` y ) = ( y prefix ( N + 1 ) ) ) ) |
12 |
10 11
|
chvarvv |
|- ( ( X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) ) |
13 |
12
|
3adant1 |
|- ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) ) |
14 |
13
|
imp |
|- ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) |
15 |
1 2 3 4
|
numclwlk2lem2f |
|- ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> R : ( X H ( N + 2 ) ) --> ( X Q N ) ) |
16 |
15
|
ffvelrnda |
|- ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( R ` x ) e. ( X Q N ) ) |
17 |
14 16
|
eqeltrrd |
|- ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( x prefix ( N + 1 ) ) e. ( X Q N ) ) |
18 |
17
|
ralrimiva |
|- ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> A. x e. ( X H ( N + 2 ) ) ( x prefix ( N + 1 ) ) e. ( X Q N ) ) |
19 |
1 2 3
|
numclwwlk2lem1 |
|- ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. ( X Q N ) -> E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) ) |
20 |
19
|
imp |
|- ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ u e. ( X Q N ) ) -> E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) |
21 |
1 2
|
numclwwlkovq |
|- ( ( X e. V /\ N e. NN ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) |
22 |
21
|
eleq2d |
|- ( ( X e. V /\ N e. NN ) -> ( u e. ( X Q N ) <-> u e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) ) |
23 |
22
|
3adant1 |
|- ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. ( X Q N ) <-> u e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) ) |
24 |
|
fveq1 |
|- ( w = u -> ( w ` 0 ) = ( u ` 0 ) ) |
25 |
24
|
eqeq1d |
|- ( w = u -> ( ( w ` 0 ) = X <-> ( u ` 0 ) = X ) ) |
26 |
|
fveq2 |
|- ( w = u -> ( lastS ` w ) = ( lastS ` u ) ) |
27 |
26
|
neeq1d |
|- ( w = u -> ( ( lastS ` w ) =/= X <-> ( lastS ` u ) =/= X ) ) |
28 |
25 27
|
anbi12d |
|- ( w = u -> ( ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) <-> ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) ) |
29 |
28
|
elrab |
|- ( u e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } <-> ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) ) |
30 |
23 29
|
bitrdi |
|- ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. ( X Q N ) <-> ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) ) ) |
31 |
|
wwlknbp1 |
|- ( u e. ( N WWalksN G ) -> ( N e. NN0 /\ u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) ) |
32 |
|
3simpc |
|- ( ( N e. NN0 /\ u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) -> ( u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) ) |
33 |
31 32
|
syl |
|- ( u e. ( N WWalksN G ) -> ( u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) ) |
34 |
1
|
wrdeqi |
|- Word V = Word ( Vtx ` G ) |
35 |
34
|
eleq2i |
|- ( u e. Word V <-> u e. Word ( Vtx ` G ) ) |
36 |
35
|
anbi1i |
|- ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) <-> ( u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) ) |
37 |
33 36
|
sylibr |
|- ( u e. ( N WWalksN G ) -> ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) ) |
38 |
|
simpll |
|- ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> u e. Word V ) |
39 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
40 |
|
2nn |
|- 2 e. NN |
41 |
40
|
a1i |
|- ( N e. NN -> 2 e. NN ) |
42 |
41
|
nnzd |
|- ( N e. NN -> 2 e. ZZ ) |
43 |
|
nn0pzuz |
|- ( ( N e. NN0 /\ 2 e. ZZ ) -> ( N + 2 ) e. ( ZZ>= ` 2 ) ) |
44 |
39 42 43
|
syl2anc |
|- ( N e. NN -> ( N + 2 ) e. ( ZZ>= ` 2 ) ) |
45 |
3
|
numclwwlkovh |
|- ( ( X e. V /\ ( N + 2 ) e. ( ZZ>= ` 2 ) ) -> ( X H ( N + 2 ) ) = { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) |
46 |
44 45
|
sylan2 |
|- ( ( X e. V /\ N e. NN ) -> ( X H ( N + 2 ) ) = { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) |
47 |
46
|
eleq2d |
|- ( ( X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) <-> x e. { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) ) |
48 |
|
fveq1 |
|- ( w = x -> ( w ` 0 ) = ( x ` 0 ) ) |
49 |
48
|
eqeq1d |
|- ( w = x -> ( ( w ` 0 ) = X <-> ( x ` 0 ) = X ) ) |
50 |
|
fveq1 |
|- ( w = x -> ( w ` ( ( N + 2 ) - 2 ) ) = ( x ` ( ( N + 2 ) - 2 ) ) ) |
51 |
50 48
|
neeq12d |
|- ( w = x -> ( ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) <-> ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) |
52 |
49 51
|
anbi12d |
|- ( w = x -> ( ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) <-> ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) |
53 |
52
|
elrab |
|- ( x e. { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) |
54 |
47 53
|
bitrdi |
|- ( ( X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) ) |
55 |
54
|
3adant1 |
|- ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) ) |
56 |
55
|
adantl |
|- ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. ( X H ( N + 2 ) ) <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) ) |
57 |
1
|
clwwlknbp |
|- ( x e. ( ( N + 2 ) ClWWalksN G ) -> ( x e. Word V /\ ( # ` x ) = ( N + 2 ) ) ) |
58 |
|
lencl |
|- ( u e. Word V -> ( # ` u ) e. NN0 ) |
59 |
|
simprr |
|- ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> x e. Word V ) |
60 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
61 |
60
|
a1i |
|- ( N e. NN -> 2 = ( 1 + 1 ) ) |
62 |
61
|
oveq2d |
|- ( N e. NN -> ( N + 2 ) = ( N + ( 1 + 1 ) ) ) |
63 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
64 |
|
1cnd |
|- ( N e. NN -> 1 e. CC ) |
65 |
63 64 64
|
addassd |
|- ( N e. NN -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) ) |
66 |
62 65
|
eqtr4d |
|- ( N e. NN -> ( N + 2 ) = ( ( N + 1 ) + 1 ) ) |
67 |
66
|
adantl |
|- ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) -> ( N + 2 ) = ( ( N + 1 ) + 1 ) ) |
68 |
67
|
eqeq2d |
|- ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) -> ( ( # ` x ) = ( N + 2 ) <-> ( # ` x ) = ( ( N + 1 ) + 1 ) ) ) |
69 |
68
|
biimpcd |
|- ( ( # ` x ) = ( N + 2 ) -> ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) -> ( # ` x ) = ( ( N + 1 ) + 1 ) ) ) |
70 |
69
|
adantr |
|- ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) -> ( # ` x ) = ( ( N + 1 ) + 1 ) ) ) |
71 |
70
|
impcom |
|- ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( # ` x ) = ( ( N + 1 ) + 1 ) ) |
72 |
|
oveq1 |
|- ( ( # ` u ) = ( N + 1 ) -> ( ( # ` u ) + 1 ) = ( ( N + 1 ) + 1 ) ) |
73 |
72
|
ad3antlr |
|- ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( ( # ` u ) + 1 ) = ( ( N + 1 ) + 1 ) ) |
74 |
71 73
|
eqtr4d |
|- ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( # ` x ) = ( ( # ` u ) + 1 ) ) |
75 |
59 74
|
jca |
|- ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) |
76 |
75
|
exp31 |
|- ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) -> ( N e. NN -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) |
77 |
58 76
|
sylan |
|- ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) -> ( N e. NN -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) |
78 |
77
|
com12 |
|- ( N e. NN -> ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) |
79 |
78
|
3ad2ant3 |
|- ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) |
80 |
79
|
impcom |
|- ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) |
81 |
80
|
com12 |
|- ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) |
82 |
81
|
ancoms |
|- ( ( x e. Word V /\ ( # ` x ) = ( N + 2 ) ) -> ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) |
83 |
57 82
|
syl |
|- ( x e. ( ( N + 2 ) ClWWalksN G ) -> ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) |
84 |
83
|
adantr |
|- ( ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) |
85 |
84
|
com12 |
|- ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) |
86 |
56 85
|
sylbid |
|- ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. ( X H ( N + 2 ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) |
87 |
86
|
ralrimiv |
|- ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) |
88 |
38 87
|
jca |
|- ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) |
89 |
88
|
ex |
|- ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) -> ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) |
90 |
37 89
|
syl |
|- ( u e. ( N WWalksN G ) -> ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) |
91 |
90
|
adantr |
|- ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) -> ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) ) |
92 |
91
|
imp |
|- ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) |
93 |
|
nfcv |
|- F/_ v X |
94 |
|
nfmpo1 |
|- F/_ v ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) |
95 |
3 94
|
nfcxfr |
|- F/_ v H |
96 |
|
nfcv |
|- F/_ v ( N + 2 ) |
97 |
93 95 96
|
nfov |
|- F/_ v ( X H ( N + 2 ) ) |
98 |
97
|
reuccatpfxs1 |
|- ( ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( # ` u ) ) ) ) |
99 |
92 98
|
syl |
|- ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( # ` u ) ) ) ) |
100 |
99
|
imp |
|- ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( # ` u ) ) ) |
101 |
31
|
simp3d |
|- ( u e. ( N WWalksN G ) -> ( # ` u ) = ( N + 1 ) ) |
102 |
101
|
eqcomd |
|- ( u e. ( N WWalksN G ) -> ( N + 1 ) = ( # ` u ) ) |
103 |
102
|
ad4antr |
|- ( ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) /\ x e. ( X H ( N + 2 ) ) ) -> ( N + 1 ) = ( # ` u ) ) |
104 |
103
|
oveq2d |
|- ( ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) /\ x e. ( X H ( N + 2 ) ) ) -> ( x prefix ( N + 1 ) ) = ( x prefix ( # ` u ) ) ) |
105 |
104
|
eqeq2d |
|- ( ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) /\ x e. ( X H ( N + 2 ) ) ) -> ( u = ( x prefix ( N + 1 ) ) <-> u = ( x prefix ( # ` u ) ) ) ) |
106 |
105
|
reubidva |
|- ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) -> ( E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) <-> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( # ` u ) ) ) ) |
107 |
100 106
|
mpbird |
|- ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) |
108 |
107
|
exp31 |
|- ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) -> ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) ) |
109 |
108
|
com12 |
|- ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) ) |
110 |
30 109
|
sylbid |
|- ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. ( X Q N ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) ) |
111 |
110
|
imp |
|- ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ u e. ( X Q N ) ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) |
112 |
20 111
|
mpd |
|- ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ u e. ( X Q N ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) |
113 |
112
|
ralrimiva |
|- ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> A. u e. ( X Q N ) E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) |
114 |
4
|
f1ompt |
|- ( R : ( X H ( N + 2 ) ) -1-1-onto-> ( X Q N ) <-> ( A. x e. ( X H ( N + 2 ) ) ( x prefix ( N + 1 ) ) e. ( X Q N ) /\ A. u e. ( X Q N ) E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) |
115 |
18 113 114
|
sylanbrc |
|- ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> R : ( X H ( N + 2 ) ) -1-1-onto-> ( X Q N ) ) |