| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlk.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							numclwwlk.q | 
							 |-  Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) | 
						
						
							| 3 | 
							
								
							 | 
							numclwwlk.h | 
							 |-  H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) | 
						
						
							| 4 | 
							
								
							 | 
							numclwwlk.r | 
							 |-  R = ( x e. ( X H ( N + 2 ) ) |-> ( x prefix ( N + 1 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eleq1w | 
							 |-  ( y = x -> ( y e. ( X H ( N + 2 ) ) <-> x e. ( X H ( N + 2 ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = x -> ( R ` y ) = ( R ` x ) )  | 
						
						
							| 7 | 
							
								
							 | 
							oveq1 | 
							 |-  ( y = x -> ( y prefix ( N + 1 ) ) = ( x prefix ( N + 1 ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqeq12d | 
							 |-  ( y = x -> ( ( R ` y ) = ( y prefix ( N + 1 ) ) <-> ( R ` x ) = ( x prefix ( N + 1 ) ) ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							imbi12d | 
							 |-  ( y = x -> ( ( y e. ( X H ( N + 2 ) ) -> ( R ` y ) = ( y prefix ( N + 1 ) ) ) <-> ( x e. ( X H ( N + 2 ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							imbi2d | 
							 |-  ( y = x -> ( ( ( X e. V /\ N e. NN ) -> ( y e. ( X H ( N + 2 ) ) -> ( R ` y ) = ( y prefix ( N + 1 ) ) ) ) <-> ( ( X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) ) ) )  | 
						
						
							| 11 | 
							
								1 2 3 4
							 | 
							numclwlk2lem2fv | 
							 |-  ( ( X e. V /\ N e. NN ) -> ( y e. ( X H ( N + 2 ) ) -> ( R ` y ) = ( y prefix ( N + 1 ) ) ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							chvarvv | 
							 |-  ( ( X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3adant1 | 
							 |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							imp | 
							 |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( R ` x ) = ( x prefix ( N + 1 ) ) )  | 
						
						
							| 15 | 
							
								1 2 3 4
							 | 
							numclwlk2lem2f | 
							 |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> R : ( X H ( N + 2 ) ) --> ( X Q N ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ffvelcdmda | 
							 |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( R ` x ) e. ( X Q N ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							eqeltrrd | 
							 |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ x e. ( X H ( N + 2 ) ) ) -> ( x prefix ( N + 1 ) ) e. ( X Q N ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ralrimiva | 
							 |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> A. x e. ( X H ( N + 2 ) ) ( x prefix ( N + 1 ) ) e. ( X Q N ) )  | 
						
						
							| 19 | 
							
								1 2 3
							 | 
							numclwwlk2lem1 | 
							 |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. ( X Q N ) -> E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							imp | 
							 |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ u e. ( X Q N ) ) -> E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) )  | 
						
						
							| 21 | 
							
								1 2
							 | 
							numclwwlkovq | 
							 |-  ( ( X e. V /\ N e. NN ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) | 
						
						
							| 22 | 
							
								21
							 | 
							eleq2d | 
							 |-  ( ( X e. V /\ N e. NN ) -> ( u e. ( X Q N ) <-> u e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) ) | 
						
						
							| 23 | 
							
								22
							 | 
							3adant1 | 
							 |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. ( X Q N ) <-> u e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) ) | 
						
						
							| 24 | 
							
								
							 | 
							fveq1 | 
							 |-  ( w = u -> ( w ` 0 ) = ( u ` 0 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							eqeq1d | 
							 |-  ( w = u -> ( ( w ` 0 ) = X <-> ( u ` 0 ) = X ) )  | 
						
						
							| 26 | 
							
								
							 | 
							fveq2 | 
							 |-  ( w = u -> ( lastS ` w ) = ( lastS ` u ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							neeq1d | 
							 |-  ( w = u -> ( ( lastS ` w ) =/= X <-> ( lastS ` u ) =/= X ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							anbi12d | 
							 |-  ( w = u -> ( ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) <-> ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							elrab | 
							 |-  ( u e. { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } <-> ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) ) | 
						
						
							| 30 | 
							
								23 29
							 | 
							bitrdi | 
							 |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. ( X Q N ) <-> ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							wwlknbp1 | 
							 |-  ( u e. ( N WWalksN G ) -> ( N e. NN0 /\ u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							3simpc | 
							 |-  ( ( N e. NN0 /\ u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) -> ( u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							syl | 
							 |-  ( u e. ( N WWalksN G ) -> ( u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) )  | 
						
						
							| 34 | 
							
								1
							 | 
							wrdeqi | 
							 |-  Word V = Word ( Vtx ` G )  | 
						
						
							| 35 | 
							
								34
							 | 
							eleq2i | 
							 |-  ( u e. Word V <-> u e. Word ( Vtx ` G ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							anbi1i | 
							 |-  ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) <-> ( u e. Word ( Vtx ` G ) /\ ( # ` u ) = ( N + 1 ) ) )  | 
						
						
							| 37 | 
							
								33 36
							 | 
							sylibr | 
							 |-  ( u e. ( N WWalksN G ) -> ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> u e. Word V )  | 
						
						
							| 39 | 
							
								
							 | 
							nnnn0 | 
							 |-  ( N e. NN -> N e. NN0 )  | 
						
						
							| 40 | 
							
								
							 | 
							2nn | 
							 |-  2 e. NN  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							 |-  ( N e. NN -> 2 e. NN )  | 
						
						
							| 42 | 
							
								41
							 | 
							nnzd | 
							 |-  ( N e. NN -> 2 e. ZZ )  | 
						
						
							| 43 | 
							
								
							 | 
							nn0pzuz | 
							 |-  ( ( N e. NN0 /\ 2 e. ZZ ) -> ( N + 2 ) e. ( ZZ>= ` 2 ) )  | 
						
						
							| 44 | 
							
								39 42 43
							 | 
							syl2anc | 
							 |-  ( N e. NN -> ( N + 2 ) e. ( ZZ>= ` 2 ) )  | 
						
						
							| 45 | 
							
								3
							 | 
							numclwwlkovh | 
							 |-  ( ( X e. V /\ ( N + 2 ) e. ( ZZ>= ` 2 ) ) -> ( X H ( N + 2 ) ) = { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) | 
						
						
							| 46 | 
							
								44 45
							 | 
							sylan2 | 
							 |-  ( ( X e. V /\ N e. NN ) -> ( X H ( N + 2 ) ) = { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) | 
						
						
							| 47 | 
							
								46
							 | 
							eleq2d | 
							 |-  ( ( X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) <-> x e. { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } ) ) | 
						
						
							| 48 | 
							
								
							 | 
							fveq1 | 
							 |-  ( w = x -> ( w ` 0 ) = ( x ` 0 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							eqeq1d | 
							 |-  ( w = x -> ( ( w ` 0 ) = X <-> ( x ` 0 ) = X ) )  | 
						
						
							| 50 | 
							
								
							 | 
							fveq1 | 
							 |-  ( w = x -> ( w ` ( ( N + 2 ) - 2 ) ) = ( x ` ( ( N + 2 ) - 2 ) ) )  | 
						
						
							| 51 | 
							
								50 48
							 | 
							neeq12d | 
							 |-  ( w = x -> ( ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) <-> ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) )  | 
						
						
							| 52 | 
							
								49 51
							 | 
							anbi12d | 
							 |-  ( w = x -> ( ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) <-> ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							elrab | 
							 |-  ( x e. { w e. ( ( N + 2 ) ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( ( N + 2 ) - 2 ) ) =/= ( w ` 0 ) ) } <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) | 
						
						
							| 54 | 
							
								47 53
							 | 
							bitrdi | 
							 |-  ( ( X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							3adant1 | 
							 |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( x e. ( X H ( N + 2 ) ) <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							adantl | 
							 |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. ( X H ( N + 2 ) ) <-> ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) ) )  | 
						
						
							| 57 | 
							
								1
							 | 
							clwwlknbp | 
							 |-  ( x e. ( ( N + 2 ) ClWWalksN G ) -> ( x e. Word V /\ ( # ` x ) = ( N + 2 ) ) )  | 
						
						
							| 58 | 
							
								
							 | 
							lencl | 
							 |-  ( u e. Word V -> ( # ` u ) e. NN0 )  | 
						
						
							| 59 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> x e. Word V )  | 
						
						
							| 60 | 
							
								
							 | 
							df-2 | 
							 |-  2 = ( 1 + 1 )  | 
						
						
							| 61 | 
							
								60
							 | 
							a1i | 
							 |-  ( N e. NN -> 2 = ( 1 + 1 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							oveq2d | 
							 |-  ( N e. NN -> ( N + 2 ) = ( N + ( 1 + 1 ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							nncn | 
							 |-  ( N e. NN -> N e. CC )  | 
						
						
							| 64 | 
							
								
							 | 
							1cnd | 
							 |-  ( N e. NN -> 1 e. CC )  | 
						
						
							| 65 | 
							
								63 64 64
							 | 
							addassd | 
							 |-  ( N e. NN -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) )  | 
						
						
							| 66 | 
							
								62 65
							 | 
							eqtr4d | 
							 |-  ( N e. NN -> ( N + 2 ) = ( ( N + 1 ) + 1 ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							adantl | 
							 |-  ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) -> ( N + 2 ) = ( ( N + 1 ) + 1 ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							eqeq2d | 
							 |-  ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) -> ( ( # ` x ) = ( N + 2 ) <-> ( # ` x ) = ( ( N + 1 ) + 1 ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							biimpcd | 
							 |-  ( ( # ` x ) = ( N + 2 ) -> ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) -> ( # ` x ) = ( ( N + 1 ) + 1 ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							adantr | 
							 |-  ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) -> ( # ` x ) = ( ( N + 1 ) + 1 ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							impcom | 
							 |-  ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( # ` x ) = ( ( N + 1 ) + 1 ) )  | 
						
						
							| 72 | 
							
								
							 | 
							oveq1 | 
							 |-  ( ( # ` u ) = ( N + 1 ) -> ( ( # ` u ) + 1 ) = ( ( N + 1 ) + 1 ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							ad3antlr | 
							 |-  ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( ( # ` u ) + 1 ) = ( ( N + 1 ) + 1 ) )  | 
						
						
							| 74 | 
							
								71 73
							 | 
							eqtr4d | 
							 |-  ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( # ` x ) = ( ( # ` u ) + 1 ) )  | 
						
						
							| 75 | 
							
								59 74
							 | 
							jca | 
							 |-  ( ( ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) /\ N e. NN ) /\ ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							exp31 | 
							 |-  ( ( ( # ` u ) e. NN0 /\ ( # ` u ) = ( N + 1 ) ) -> ( N e. NN -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) )  | 
						
						
							| 77 | 
							
								58 76
							 | 
							sylan | 
							 |-  ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) -> ( N e. NN -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							com12 | 
							 |-  ( N e. NN -> ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							3ad2ant3 | 
							 |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							impcom | 
							 |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							com12 | 
							 |-  ( ( ( # ` x ) = ( N + 2 ) /\ x e. Word V ) -> ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							ancoms | 
							 |-  ( ( x e. Word V /\ ( # ` x ) = ( N + 2 ) ) -> ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) )  | 
						
						
							| 83 | 
							
								57 82
							 | 
							syl | 
							 |-  ( x e. ( ( N + 2 ) ClWWalksN G ) -> ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							adantr | 
							 |-  ( ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							com12 | 
							 |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( ( x e. ( ( N + 2 ) ClWWalksN G ) /\ ( ( x ` 0 ) = X /\ ( x ` ( ( N + 2 ) - 2 ) ) =/= ( x ` 0 ) ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) )  | 
						
						
							| 86 | 
							
								56 85
							 | 
							sylbid | 
							 |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( x e. ( X H ( N + 2 ) ) -> ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							ralrimiv | 
							 |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) )  | 
						
						
							| 88 | 
							
								38 87
							 | 
							jca | 
							 |-  ( ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							ex | 
							 |-  ( ( u e. Word V /\ ( # ` u ) = ( N + 1 ) ) -> ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) )  | 
						
						
							| 90 | 
							
								37 89
							 | 
							syl | 
							 |-  ( u e. ( N WWalksN G ) -> ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							adantr | 
							 |-  ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) -> ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							imp | 
							 |-  ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) )  | 
						
						
							| 93 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ v X  | 
						
						
							| 94 | 
							
								
							 | 
							nfmpo1 | 
							 |-  F/_ v ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) | 
						
						
							| 95 | 
							
								3 94
							 | 
							nfcxfr | 
							 |-  F/_ v H  | 
						
						
							| 96 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ v ( N + 2 )  | 
						
						
							| 97 | 
							
								93 95 96
							 | 
							nfov | 
							 |-  F/_ v ( X H ( N + 2 ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							reuccatpfxs1 | 
							 |-  ( ( u e. Word V /\ A. x e. ( X H ( N + 2 ) ) ( x e. Word V /\ ( # ` x ) = ( ( # ` u ) + 1 ) ) ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( # ` u ) ) ) )  | 
						
						
							| 99 | 
							
								92 98
							 | 
							syl | 
							 |-  ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( # ` u ) ) ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							imp | 
							 |-  ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( # ` u ) ) )  | 
						
						
							| 101 | 
							
								31
							 | 
							simp3d | 
							 |-  ( u e. ( N WWalksN G ) -> ( # ` u ) = ( N + 1 ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							eqcomd | 
							 |-  ( u e. ( N WWalksN G ) -> ( N + 1 ) = ( # ` u ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) /\ x e. ( X H ( N + 2 ) ) ) -> ( N + 1 ) = ( # ` u ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							oveq2d | 
							 |-  ( ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) /\ x e. ( X H ( N + 2 ) ) ) -> ( x prefix ( N + 1 ) ) = ( x prefix ( # ` u ) ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							eqeq2d | 
							 |-  ( ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) /\ x e. ( X H ( N + 2 ) ) ) -> ( u = ( x prefix ( N + 1 ) ) <-> u = ( x prefix ( # ` u ) ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							reubidva | 
							 |-  ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) -> ( E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) <-> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( # ` u ) ) ) )  | 
						
						
							| 107 | 
							
								100 106
							 | 
							mpbird | 
							 |-  ( ( ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) /\ ( G e. FriendGraph /\ X e. V /\ N e. NN ) ) /\ E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							exp31 | 
							 |-  ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) -> ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							com12 | 
							 |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( ( u e. ( N WWalksN G ) /\ ( ( u ` 0 ) = X /\ ( lastS ` u ) =/= X ) ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) )  | 
						
						
							| 110 | 
							
								30 109
							 | 
							sylbid | 
							 |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> ( u e. ( X Q N ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							imp | 
							 |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ u e. ( X Q N ) ) -> ( E! v e. V ( u ++ <" v "> ) e. ( X H ( N + 2 ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) )  | 
						
						
							| 112 | 
							
								20 111
							 | 
							mpd | 
							 |-  ( ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) /\ u e. ( X Q N ) ) -> E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							ralrimiva | 
							 |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> A. u e. ( X Q N ) E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) )  | 
						
						
							| 114 | 
							
								4
							 | 
							f1ompt | 
							 |-  ( R : ( X H ( N + 2 ) ) -1-1-onto-> ( X Q N ) <-> ( A. x e. ( X H ( N + 2 ) ) ( x prefix ( N + 1 ) ) e. ( X Q N ) /\ A. u e. ( X Q N ) E! x e. ( X H ( N + 2 ) ) u = ( x prefix ( N + 1 ) ) ) )  | 
						
						
							| 115 | 
							
								18 113 114
							 | 
							sylanbrc | 
							 |-  ( ( G e. FriendGraph /\ X e. V /\ N e. NN ) -> R : ( X H ( N + 2 ) ) -1-1-onto-> ( X Q N ) )  |