| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlk.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							numclwwlk.q | 
							 |-  Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) | 
						
						
							| 3 | 
							
								
							 | 
							numclwwlk.h | 
							 |-  H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) | 
						
						
							| 4 | 
							
								
							 | 
							numclwwlk.r | 
							 |-  R = ( x e. ( X H ( N + 2 ) ) |-> ( x prefix ( N + 1 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = W -> ( x prefix ( N + 1 ) ) = ( W prefix ( N + 1 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( X e. V /\ N e. NN ) /\ W e. ( X H ( N + 2 ) ) ) -> W e. ( X H ( N + 2 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							ovexd | 
							 |-  ( ( ( X e. V /\ N e. NN ) /\ W e. ( X H ( N + 2 ) ) ) -> ( W prefix ( N + 1 ) ) e. _V )  | 
						
						
							| 8 | 
							
								4 5 6 7
							 | 
							fvmptd3 | 
							 |-  ( ( ( X e. V /\ N e. NN ) /\ W e. ( X H ( N + 2 ) ) ) -> ( R ` W ) = ( W prefix ( N + 1 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ex | 
							 |-  ( ( X e. V /\ N e. NN ) -> ( W e. ( X H ( N + 2 ) ) -> ( R ` W ) = ( W prefix ( N + 1 ) ) ) )  |