| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extwwlkfab.v |
|- V = ( Vtx ` G ) |
| 2 |
|
extwwlkfab.c |
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) |
| 3 |
|
extwwlkfab.f |
|- F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) |
| 4 |
|
rusgrusgr |
|- ( G RegUSGraph K -> G e. USGraph ) |
| 5 |
4
|
ad2antlr |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> G e. USGraph ) |
| 6 |
|
simprl |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X e. V ) |
| 7 |
|
simprr |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> N e. ( ZZ>= ` 3 ) ) |
| 8 |
1 2 3
|
numclwwlk1lem2 |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) ~~ ( F X. ( G NeighbVtx X ) ) ) |
| 9 |
5 6 7 8
|
syl3anc |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( X C N ) ~~ ( F X. ( G NeighbVtx X ) ) ) |
| 10 |
|
hasheni |
|- ( ( X C N ) ~~ ( F X. ( G NeighbVtx X ) ) -> ( # ` ( X C N ) ) = ( # ` ( F X. ( G NeighbVtx X ) ) ) ) |
| 11 |
9 10
|
syl |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X C N ) ) = ( # ` ( F X. ( G NeighbVtx X ) ) ) ) |
| 12 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 13 |
12
|
clwwlknonfin |
|- ( ( Vtx ` G ) e. Fin -> ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) e. Fin ) |
| 14 |
1
|
eleq1i |
|- ( V e. Fin <-> ( Vtx ` G ) e. Fin ) |
| 15 |
3
|
eleq1i |
|- ( F e. Fin <-> ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) e. Fin ) |
| 16 |
13 14 15
|
3imtr4i |
|- ( V e. Fin -> F e. Fin ) |
| 17 |
16
|
adantr |
|- ( ( V e. Fin /\ G RegUSGraph K ) -> F e. Fin ) |
| 18 |
17
|
adantr |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> F e. Fin ) |
| 19 |
1
|
finrusgrfusgr |
|- ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph ) |
| 20 |
19
|
ancoms |
|- ( ( V e. Fin /\ G RegUSGraph K ) -> G e. FinUSGraph ) |
| 21 |
|
fusgrfis |
|- ( G e. FinUSGraph -> ( Edg ` G ) e. Fin ) |
| 22 |
20 21
|
syl |
|- ( ( V e. Fin /\ G RegUSGraph K ) -> ( Edg ` G ) e. Fin ) |
| 23 |
22
|
adantr |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( Edg ` G ) e. Fin ) |
| 24 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 25 |
1 24
|
nbusgrfi |
|- ( ( G e. USGraph /\ ( Edg ` G ) e. Fin /\ X e. V ) -> ( G NeighbVtx X ) e. Fin ) |
| 26 |
5 23 6 25
|
syl3anc |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( G NeighbVtx X ) e. Fin ) |
| 27 |
|
hashxp |
|- ( ( F e. Fin /\ ( G NeighbVtx X ) e. Fin ) -> ( # ` ( F X. ( G NeighbVtx X ) ) ) = ( ( # ` F ) x. ( # ` ( G NeighbVtx X ) ) ) ) |
| 28 |
18 26 27
|
syl2anc |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( F X. ( G NeighbVtx X ) ) ) = ( ( # ` F ) x. ( # ` ( G NeighbVtx X ) ) ) ) |
| 29 |
1
|
rusgrpropnb |
|- ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. x e. V ( # ` ( G NeighbVtx x ) ) = K ) ) |
| 30 |
|
oveq2 |
|- ( x = X -> ( G NeighbVtx x ) = ( G NeighbVtx X ) ) |
| 31 |
30
|
fveqeq2d |
|- ( x = X -> ( ( # ` ( G NeighbVtx x ) ) = K <-> ( # ` ( G NeighbVtx X ) ) = K ) ) |
| 32 |
31
|
rspccv |
|- ( A. x e. V ( # ` ( G NeighbVtx x ) ) = K -> ( X e. V -> ( # ` ( G NeighbVtx X ) ) = K ) ) |
| 33 |
32
|
3ad2ant3 |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. x e. V ( # ` ( G NeighbVtx x ) ) = K ) -> ( X e. V -> ( # ` ( G NeighbVtx X ) ) = K ) ) |
| 34 |
29 33
|
syl |
|- ( G RegUSGraph K -> ( X e. V -> ( # ` ( G NeighbVtx X ) ) = K ) ) |
| 35 |
34
|
adantl |
|- ( ( V e. Fin /\ G RegUSGraph K ) -> ( X e. V -> ( # ` ( G NeighbVtx X ) ) = K ) ) |
| 36 |
35
|
com12 |
|- ( X e. V -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` ( G NeighbVtx X ) ) = K ) ) |
| 37 |
36
|
adantr |
|- ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( V e. Fin /\ G RegUSGraph K ) -> ( # ` ( G NeighbVtx X ) ) = K ) ) |
| 38 |
37
|
impcom |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( G NeighbVtx X ) ) = K ) |
| 39 |
38
|
oveq2d |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( # ` F ) x. ( # ` ( G NeighbVtx X ) ) ) = ( ( # ` F ) x. K ) ) |
| 40 |
|
hashcl |
|- ( F e. Fin -> ( # ` F ) e. NN0 ) |
| 41 |
|
nn0cn |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. CC ) |
| 42 |
18 40 41
|
3syl |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` F ) e. CC ) |
| 43 |
20
|
adantr |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> G e. FinUSGraph ) |
| 44 |
|
simplr |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> G RegUSGraph K ) |
| 45 |
|
ne0i |
|- ( X e. V -> V =/= (/) ) |
| 46 |
45
|
adantr |
|- ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> V =/= (/) ) |
| 47 |
46
|
adantl |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> V =/= (/) ) |
| 48 |
1
|
frusgrnn0 |
|- ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> K e. NN0 ) |
| 49 |
43 44 47 48
|
syl3anc |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> K e. NN0 ) |
| 50 |
49
|
nn0cnd |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> K e. CC ) |
| 51 |
42 50
|
mulcomd |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( # ` F ) x. K ) = ( K x. ( # ` F ) ) ) |
| 52 |
39 51
|
eqtrd |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( # ` F ) x. ( # ` ( G NeighbVtx X ) ) ) = ( K x. ( # ` F ) ) ) |
| 53 |
11 28 52
|
3eqtrd |
|- ( ( ( V e. Fin /\ G RegUSGraph K ) /\ ( X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X C N ) ) = ( K x. ( # ` F ) ) ) |