Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
|- V = ( Vtx ` G ) |
2 |
|
extwwlkfab.c |
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) |
3 |
|
extwwlkfab.f |
|- F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) |
4 |
|
oveq1 |
|- ( x = u -> ( x prefix ( N - 2 ) ) = ( u prefix ( N - 2 ) ) ) |
5 |
|
fveq1 |
|- ( x = u -> ( x ` ( N - 1 ) ) = ( u ` ( N - 1 ) ) ) |
6 |
4 5
|
opeq12d |
|- ( x = u -> <. ( x prefix ( N - 2 ) ) , ( x ` ( N - 1 ) ) >. = <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. ) |
7 |
6
|
cbvmptv |
|- ( x e. ( X C N ) |-> <. ( x prefix ( N - 2 ) ) , ( x ` ( N - 1 ) ) >. ) = ( u e. ( X C N ) |-> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. ) |
8 |
1 2 3 7
|
numclwwlk1lem2f1o |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( x e. ( X C N ) |-> <. ( x prefix ( N - 2 ) ) , ( x ` ( N - 1 ) ) >. ) : ( X C N ) -1-1-onto-> ( F X. ( G NeighbVtx X ) ) ) |
9 |
|
ovex |
|- ( X C N ) e. _V |
10 |
9
|
f1oen |
|- ( ( x e. ( X C N ) |-> <. ( x prefix ( N - 2 ) ) , ( x ` ( N - 1 ) ) >. ) : ( X C N ) -1-1-onto-> ( F X. ( G NeighbVtx X ) ) -> ( X C N ) ~~ ( F X. ( G NeighbVtx X ) ) ) |
11 |
8 10
|
syl |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) ~~ ( F X. ( G NeighbVtx X ) ) ) |