Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
|- V = ( Vtx ` G ) |
2 |
|
extwwlkfab.c |
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) |
3 |
|
extwwlkfab.f |
|- F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) |
4 |
|
numclwwlk.t |
|- T = ( u e. ( X C N ) |-> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. ) |
5 |
1 2 3
|
extwwlkfabel |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( u e. ( X C N ) <-> ( u e. ( N ClWWalksN G ) /\ ( ( u prefix ( N - 2 ) ) e. F /\ ( u ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( u ` ( N - 2 ) ) = X ) ) ) ) |
6 |
|
simpr1 |
|- ( ( u e. ( N ClWWalksN G ) /\ ( ( u prefix ( N - 2 ) ) e. F /\ ( u ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( u ` ( N - 2 ) ) = X ) ) -> ( u prefix ( N - 2 ) ) e. F ) |
7 |
|
simpr2 |
|- ( ( u e. ( N ClWWalksN G ) /\ ( ( u prefix ( N - 2 ) ) e. F /\ ( u ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( u ` ( N - 2 ) ) = X ) ) -> ( u ` ( N - 1 ) ) e. ( G NeighbVtx X ) ) |
8 |
6 7
|
opelxpd |
|- ( ( u e. ( N ClWWalksN G ) /\ ( ( u prefix ( N - 2 ) ) e. F /\ ( u ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( u ` ( N - 2 ) ) = X ) ) -> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. e. ( F X. ( G NeighbVtx X ) ) ) |
9 |
5 8
|
syl6bi |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( u e. ( X C N ) -> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. e. ( F X. ( G NeighbVtx X ) ) ) ) |
10 |
9
|
imp |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ u e. ( X C N ) ) -> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. e. ( F X. ( G NeighbVtx X ) ) ) |
11 |
10 4
|
fmptd |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) --> ( F X. ( G NeighbVtx X ) ) ) |