Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
|- V = ( Vtx ` G ) |
2 |
|
extwwlkfab.c |
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) |
3 |
|
extwwlkfab.f |
|- F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) |
4 |
|
numclwwlk.t |
|- T = ( u e. ( X C N ) |-> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. ) |
5 |
1 2 3 4
|
numclwwlk1lem2f1 |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) -1-1-> ( F X. ( G NeighbVtx X ) ) ) |
6 |
1 2 3 4
|
numclwwlk1lem2fo |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) -onto-> ( F X. ( G NeighbVtx X ) ) ) |
7 |
|
df-f1o |
|- ( T : ( X C N ) -1-1-onto-> ( F X. ( G NeighbVtx X ) ) <-> ( T : ( X C N ) -1-1-> ( F X. ( G NeighbVtx X ) ) /\ T : ( X C N ) -onto-> ( F X. ( G NeighbVtx X ) ) ) ) |
8 |
5 6 7
|
sylanbrc |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) -1-1-onto-> ( F X. ( G NeighbVtx X ) ) ) |