| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							extwwlkfab.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							extwwlkfab.c | 
							 |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) | 
						
						
							| 3 | 
							
								
							 | 
							extwwlkfab.f | 
							 |-  F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							numclwwlk.t | 
							 |-  T = ( u e. ( X C N ) |-> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							numclwwlk1lem2f1 | 
							 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) -1-1-> ( F X. ( G NeighbVtx X ) ) )  | 
						
						
							| 6 | 
							
								1 2 3 4
							 | 
							numclwwlk1lem2fo | 
							 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) -onto-> ( F X. ( G NeighbVtx X ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							df-f1o | 
							 |-  ( T : ( X C N ) -1-1-onto-> ( F X. ( G NeighbVtx X ) ) <-> ( T : ( X C N ) -1-1-> ( F X. ( G NeighbVtx X ) ) /\ T : ( X C N ) -onto-> ( F X. ( G NeighbVtx X ) ) ) )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							sylanbrc | 
							 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> T : ( X C N ) -1-1-onto-> ( F X. ( G NeighbVtx X ) ) )  |