Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
|- V = ( Vtx ` G ) |
2 |
|
extwwlkfab.c |
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) |
3 |
|
extwwlkfab.f |
|- F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) |
4 |
|
simpl2 |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> X e. V ) |
5 |
1
|
nbgrisvtx |
|- ( Y e. ( G NeighbVtx X ) -> Y e. V ) |
6 |
5
|
ad2antll |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> Y e. V ) |
7 |
|
simpl3 |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> N e. ( ZZ>= ` 3 ) ) |
8 |
|
nbgrsym |
|- ( Y e. ( G NeighbVtx X ) <-> X e. ( G NeighbVtx Y ) ) |
9 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
10 |
9
|
nbusgreledg |
|- ( G e. USGraph -> ( X e. ( G NeighbVtx Y ) <-> { X , Y } e. ( Edg ` G ) ) ) |
11 |
10
|
biimpd |
|- ( G e. USGraph -> ( X e. ( G NeighbVtx Y ) -> { X , Y } e. ( Edg ` G ) ) ) |
12 |
8 11
|
syl5bi |
|- ( G e. USGraph -> ( Y e. ( G NeighbVtx X ) -> { X , Y } e. ( Edg ` G ) ) ) |
13 |
12
|
adantld |
|- ( G e. USGraph -> ( ( W e. F /\ Y e. ( G NeighbVtx X ) ) -> { X , Y } e. ( Edg ` G ) ) ) |
14 |
13
|
3ad2ant1 |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W e. F /\ Y e. ( G NeighbVtx X ) ) -> { X , Y } e. ( Edg ` G ) ) ) |
15 |
14
|
imp |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> { X , Y } e. ( Edg ` G ) ) |
16 |
|
simprl |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> W e. F ) |
17 |
16 3
|
eleqtrdi |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) |
18 |
1 9
|
clwwlknonex2 |
|- ( ( ( X e. V /\ Y e. V /\ N e. ( ZZ>= ` 3 ) ) /\ { X , Y } e. ( Edg ` G ) /\ W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( N ClWWalksN G ) ) |
19 |
4 6 7 15 17 18
|
syl311anc |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( N ClWWalksN G ) ) |
20 |
3
|
eleq2i |
|- ( W e. F <-> W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) |
21 |
|
uz3m2nn |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) |
22 |
21
|
nnne0d |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) =/= 0 ) |
23 |
1 9
|
clwwlknonel |
|- ( ( N - 2 ) =/= 0 -> ( W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) ) |
24 |
22 23
|
syl |
|- ( N e. ( ZZ>= ` 3 ) -> ( W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) ) |
25 |
24
|
3ad2ant3 |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) ) |
26 |
20 25
|
syl5bb |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. F <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) ) ) |
27 |
|
3simpa |
|- ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) ) |
28 |
27
|
adantr |
|- ( ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ Y e. ( G NeighbVtx X ) ) -> ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) ) |
29 |
|
simp32 |
|- ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X e. V ) |
30 |
29 5
|
anim12i |
|- ( ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ Y e. ( G NeighbVtx X ) ) -> ( X e. V /\ Y e. V ) ) |
31 |
|
simpl33 |
|- ( ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ Y e. ( G NeighbVtx X ) ) -> N e. ( ZZ>= ` 3 ) ) |
32 |
28 30 31
|
3jca |
|- ( ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) /\ Y e. ( G NeighbVtx X ) ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) |
33 |
32
|
3exp1 |
|- ( W e. Word V -> ( ( # ` W ) = ( N - 2 ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( Y e. ( G NeighbVtx X ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) ) ) ) |
34 |
33
|
3ad2ant1 |
|- ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( ( # ` W ) = ( N - 2 ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( Y e. ( G NeighbVtx X ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) ) ) ) |
35 |
34
|
imp |
|- ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( Y e. ( G NeighbVtx X ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) ) ) |
36 |
35
|
3adant3 |
|- ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( Y e. ( G NeighbVtx X ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) ) ) |
37 |
36
|
com12 |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ ( # ` W ) = ( N - 2 ) /\ ( W ` 0 ) = X ) -> ( Y e. ( G NeighbVtx X ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) ) ) |
38 |
26 37
|
sylbid |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( W e. F -> ( Y e. ( G NeighbVtx X ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) ) ) |
39 |
38
|
imp32 |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) ) |
40 |
|
numclwwlk1lem2foalem |
|- ( ( ( W e. Word V /\ ( # ` W ) = ( N - 2 ) ) /\ ( X e. V /\ Y e. V ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) = W /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) = Y /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) |
41 |
39 40
|
syl |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) = W /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) = Y /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) |
42 |
|
eleq1a |
|- ( W e. F -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) = W -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) e. F ) ) |
43 |
16 42
|
syl |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) = W -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) e. F ) ) |
44 |
|
eleq1a |
|- ( Y e. ( G NeighbVtx X ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) = Y -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) e. ( G NeighbVtx X ) ) ) |
45 |
44
|
ad2antll |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) = Y -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) e. ( G NeighbVtx X ) ) ) |
46 |
|
idd |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) |
47 |
43 45 46
|
3anim123d |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) = W /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) = Y /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) e. F /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) ) |
48 |
41 47
|
mpd |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) e. F /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) |
49 |
1 2 3
|
extwwlkfabel |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( X C N ) <-> ( ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( N ClWWalksN G ) /\ ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) e. F /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) ) ) |
50 |
49
|
adantr |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( X C N ) <-> ( ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( N ClWWalksN G ) /\ ( ( ( ( W ++ <" X "> ) ++ <" Y "> ) prefix ( N - 2 ) ) e. F /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( ( ( W ++ <" X "> ) ++ <" Y "> ) ` ( N - 2 ) ) = X ) ) ) ) |
51 |
19 48 50
|
mpbir2and |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ ( W e. F /\ Y e. ( G NeighbVtx X ) ) ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( X C N ) ) |
52 |
51
|
ex |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( W e. F /\ Y e. ( G NeighbVtx X ) ) -> ( ( W ++ <" X "> ) ++ <" Y "> ) e. ( X C N ) ) ) |