Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
|- V = ( Vtx ` G ) |
2 |
|
extwwlkfab.c |
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) |
3 |
|
extwwlkfab.f |
|- F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) |
4 |
|
numclwwlk.t |
|- T = ( u e. ( X C N ) |-> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. ) |
5 |
|
oveq1 |
|- ( u = W -> ( u prefix ( N - 2 ) ) = ( W prefix ( N - 2 ) ) ) |
6 |
|
fveq1 |
|- ( u = W -> ( u ` ( N - 1 ) ) = ( W ` ( N - 1 ) ) ) |
7 |
5 6
|
opeq12d |
|- ( u = W -> <. ( u prefix ( N - 2 ) ) , ( u ` ( N - 1 ) ) >. = <. ( W prefix ( N - 2 ) ) , ( W ` ( N - 1 ) ) >. ) |
8 |
|
opex |
|- <. ( W prefix ( N - 2 ) ) , ( W ` ( N - 1 ) ) >. e. _V |
9 |
7 4 8
|
fvmpt |
|- ( W e. ( X C N ) -> ( T ` W ) = <. ( W prefix ( N - 2 ) ) , ( W ` ( N - 1 ) ) >. ) |