Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk.v |
|- V = ( Vtx ` G ) |
2 |
|
numclwwlk.q |
|- Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) |
3 |
|
numclwwlk.h |
|- H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) |
4 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` 3 ) -> N e. CC ) |
5 |
|
2cnd |
|- ( N e. ( ZZ>= ` 3 ) -> 2 e. CC ) |
6 |
4 5
|
npcand |
|- ( N e. ( ZZ>= ` 3 ) -> ( ( N - 2 ) + 2 ) = N ) |
7 |
6
|
eqcomd |
|- ( N e. ( ZZ>= ` 3 ) -> N = ( ( N - 2 ) + 2 ) ) |
8 |
7
|
3ad2ant3 |
|- ( ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> N = ( ( N - 2 ) + 2 ) ) |
9 |
8
|
adantl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> N = ( ( N - 2 ) + 2 ) ) |
10 |
9
|
oveq2d |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( X H N ) = ( X H ( ( N - 2 ) + 2 ) ) ) |
11 |
10
|
fveq2d |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X H N ) ) = ( # ` ( X H ( ( N - 2 ) + 2 ) ) ) ) |
12 |
|
simplr |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> G e. FriendGraph ) |
13 |
|
simpr2 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> X e. V ) |
14 |
|
uz3m2nn |
|- ( N e. ( ZZ>= ` 3 ) -> ( N - 2 ) e. NN ) |
15 |
14
|
3ad2ant3 |
|- ( ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( N - 2 ) e. NN ) |
16 |
15
|
adantl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( N - 2 ) e. NN ) |
17 |
1 2 3
|
numclwwlk2lem3 |
|- ( ( G e. FriendGraph /\ X e. V /\ ( N - 2 ) e. NN ) -> ( # ` ( X Q ( N - 2 ) ) ) = ( # ` ( X H ( ( N - 2 ) + 2 ) ) ) ) |
18 |
12 13 16 17
|
syl3anc |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X Q ( N - 2 ) ) ) = ( # ` ( X H ( ( N - 2 ) + 2 ) ) ) ) |
19 |
|
simpl |
|- ( ( G RegUSGraph K /\ G e. FriendGraph ) -> G RegUSGraph K ) |
20 |
|
simp1 |
|- ( ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> V e. Fin ) |
21 |
19 20
|
anim12i |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( G RegUSGraph K /\ V e. Fin ) ) |
22 |
14
|
anim2i |
|- ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X e. V /\ ( N - 2 ) e. NN ) ) |
23 |
22
|
3adant1 |
|- ( ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X e. V /\ ( N - 2 ) e. NN ) ) |
24 |
23
|
adantl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( X e. V /\ ( N - 2 ) e. NN ) ) |
25 |
1 2
|
numclwwlkqhash |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ ( N - 2 ) e. NN ) ) -> ( # ` ( X Q ( N - 2 ) ) ) = ( ( K ^ ( N - 2 ) ) - ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) ) |
26 |
21 24 25
|
syl2anc |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X Q ( N - 2 ) ) ) = ( ( K ^ ( N - 2 ) ) - ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) ) |
27 |
11 18 26
|
3eqtr2d |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X H N ) ) = ( ( K ^ ( N - 2 ) ) - ( # ` ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) ) ) |