| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							wwlknbp1 | 
							 |-  ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> W e. Word ( Vtx ` G ) )  | 
						
						
							| 3 | 
							
								
							 | 
							s1cl | 
							 |-  ( X e. ( Vtx ` G ) -> <" X "> e. Word ( Vtx ` G ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ad2antrl | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> <" X "> e. Word ( Vtx ` G ) )  | 
						
						
							| 5 | 
							
								
							 | 
							nn0p1gt0 | 
							 |-  ( N e. NN0 -> 0 < ( N + 1 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3ad2ant1 | 
							 |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> 0 < ( N + 1 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> 0 < ( N + 1 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							breq2 | 
							 |-  ( ( # ` W ) = ( N + 1 ) -> ( 0 < ( # ` W ) <-> 0 < ( N + 1 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3ad2ant3 | 
							 |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( 0 < ( # ` W ) <-> 0 < ( N + 1 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> ( 0 < ( # ` W ) <-> 0 < ( N + 1 ) ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							mpbird | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> 0 < ( # ` W ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ccatfv0 | 
							 |-  ( ( W e. Word ( Vtx ` G ) /\ <" X "> e. Word ( Vtx ` G ) /\ 0 < ( # ` W ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) )  | 
						
						
							| 13 | 
							
								2 4 11 12
							 | 
							syl3anc | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq1 | 
							 |-  ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							3ad2ant3 | 
							 |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							nn0cn | 
							 |-  ( N e. NN0 -> N e. CC )  | 
						
						
							| 17 | 
							
								
							 | 
							pncan1 | 
							 |-  ( N e. CC -> ( ( N + 1 ) - 1 ) = N )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							 |-  ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N )  | 
						
						
							| 19 | 
							
								18
							 | 
							3ad2ant1 | 
							 |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( N + 1 ) - 1 ) = N )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							eqtr2d | 
							 |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> N = ( ( # ` W ) - 1 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> N = ( ( # ` W ) - 1 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							fveq2d | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( ( W ++ <" X "> ) ` N ) = ( ( W ++ <" X "> ) ` ( ( # ` W ) - 1 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> W e. Word ( Vtx ` G ) )  | 
						
						
							| 24 | 
							
								3
							 | 
							adantl | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> <" X "> e. Word ( Vtx ` G ) )  | 
						
						
							| 25 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> 0 < ( N + 1 ) )  | 
						
						
							| 26 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( 0 < ( # ` W ) <-> 0 < ( N + 1 ) ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							mpbird | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> 0 < ( # ` W ) )  | 
						
						
							| 28 | 
							
								
							 | 
							hashneq0 | 
							 |-  ( W e. Word ( Vtx ` G ) -> ( 0 < ( # ` W ) <-> W =/= (/) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							bicomd | 
							 |-  ( W e. Word ( Vtx ` G ) -> ( W =/= (/) <-> 0 < ( # ` W ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							3ad2ant2 | 
							 |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( W =/= (/) <-> 0 < ( # ` W ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( W =/= (/) <-> 0 < ( # ` W ) ) )  | 
						
						
							| 32 | 
							
								27 31
							 | 
							mpbird | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> W =/= (/) )  | 
						
						
							| 33 | 
							
								
							 | 
							ccatval1lsw | 
							 |-  ( ( W e. Word ( Vtx ` G ) /\ <" X "> e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( ( W ++ <" X "> ) ` ( ( # ` W ) - 1 ) ) = ( lastS ` W ) )  | 
						
						
							| 34 | 
							
								23 24 32 33
							 | 
							syl3anc | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( ( W ++ <" X "> ) ` ( ( # ` W ) - 1 ) ) = ( lastS ` W ) )  | 
						
						
							| 35 | 
							
								22 34
							 | 
							eqtr2d | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( lastS ` W ) = ( ( W ++ <" X "> ) ` N ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							neeq1d | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( ( lastS ` W ) =/= ( W ` 0 ) <-> ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							biimpd | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( ( lastS ` W ) =/= ( W ` 0 ) -> ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							impr | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) )  | 
						
						
							| 39 | 
							
								13 38
							 | 
							jca | 
							 |-  ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> ( ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							exp32 | 
							 |-  ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( X e. ( Vtx ` G ) -> ( ( lastS ` W ) =/= ( W ` 0 ) -> ( ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) ) )  | 
						
						
							| 41 | 
							
								1 40
							 | 
							syl | 
							 |-  ( W e. ( N WWalksN G ) -> ( X e. ( Vtx ` G ) -> ( ( lastS ` W ) =/= ( W ` 0 ) -> ( ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							3imp21 | 
							 |-  ( ( X e. ( Vtx ` G ) /\ W e. ( N WWalksN G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) -> ( ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) )  |