Step |
Hyp |
Ref |
Expression |
1 |
|
wwlknbp1 |
|- ( W e. ( N WWalksN G ) -> ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) |
2 |
|
simpl2 |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> W e. Word ( Vtx ` G ) ) |
3 |
|
s1cl |
|- ( X e. ( Vtx ` G ) -> <" X "> e. Word ( Vtx ` G ) ) |
4 |
3
|
ad2antrl |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> <" X "> e. Word ( Vtx ` G ) ) |
5 |
|
nn0p1gt0 |
|- ( N e. NN0 -> 0 < ( N + 1 ) ) |
6 |
5
|
3ad2ant1 |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> 0 < ( N + 1 ) ) |
7 |
6
|
adantr |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> 0 < ( N + 1 ) ) |
8 |
|
breq2 |
|- ( ( # ` W ) = ( N + 1 ) -> ( 0 < ( # ` W ) <-> 0 < ( N + 1 ) ) ) |
9 |
8
|
3ad2ant3 |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( 0 < ( # ` W ) <-> 0 < ( N + 1 ) ) ) |
10 |
9
|
adantr |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> ( 0 < ( # ` W ) <-> 0 < ( N + 1 ) ) ) |
11 |
7 10
|
mpbird |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> 0 < ( # ` W ) ) |
12 |
|
ccatfv0 |
|- ( ( W e. Word ( Vtx ` G ) /\ <" X "> e. Word ( Vtx ` G ) /\ 0 < ( # ` W ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) |
13 |
2 4 11 12
|
syl3anc |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) ) |
14 |
|
oveq1 |
|- ( ( # ` W ) = ( N + 1 ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
15 |
14
|
3ad2ant3 |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( # ` W ) - 1 ) = ( ( N + 1 ) - 1 ) ) |
16 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
17 |
|
pncan1 |
|- ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) |
18 |
16 17
|
syl |
|- ( N e. NN0 -> ( ( N + 1 ) - 1 ) = N ) |
19 |
18
|
3ad2ant1 |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( ( N + 1 ) - 1 ) = N ) |
20 |
15 19
|
eqtr2d |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> N = ( ( # ` W ) - 1 ) ) |
21 |
20
|
adantr |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> N = ( ( # ` W ) - 1 ) ) |
22 |
21
|
fveq2d |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( ( W ++ <" X "> ) ` N ) = ( ( W ++ <" X "> ) ` ( ( # ` W ) - 1 ) ) ) |
23 |
|
simpl2 |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> W e. Word ( Vtx ` G ) ) |
24 |
3
|
adantl |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> <" X "> e. Word ( Vtx ` G ) ) |
25 |
6
|
adantr |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> 0 < ( N + 1 ) ) |
26 |
9
|
adantr |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( 0 < ( # ` W ) <-> 0 < ( N + 1 ) ) ) |
27 |
25 26
|
mpbird |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> 0 < ( # ` W ) ) |
28 |
|
hashneq0 |
|- ( W e. Word ( Vtx ` G ) -> ( 0 < ( # ` W ) <-> W =/= (/) ) ) |
29 |
28
|
bicomd |
|- ( W e. Word ( Vtx ` G ) -> ( W =/= (/) <-> 0 < ( # ` W ) ) ) |
30 |
29
|
3ad2ant2 |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( W =/= (/) <-> 0 < ( # ` W ) ) ) |
31 |
30
|
adantr |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( W =/= (/) <-> 0 < ( # ` W ) ) ) |
32 |
27 31
|
mpbird |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> W =/= (/) ) |
33 |
|
ccatval1lsw |
|- ( ( W e. Word ( Vtx ` G ) /\ <" X "> e. Word ( Vtx ` G ) /\ W =/= (/) ) -> ( ( W ++ <" X "> ) ` ( ( # ` W ) - 1 ) ) = ( lastS ` W ) ) |
34 |
23 24 32 33
|
syl3anc |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( ( W ++ <" X "> ) ` ( ( # ` W ) - 1 ) ) = ( lastS ` W ) ) |
35 |
22 34
|
eqtr2d |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( lastS ` W ) = ( ( W ++ <" X "> ) ` N ) ) |
36 |
35
|
neeq1d |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( ( lastS ` W ) =/= ( W ` 0 ) <-> ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) |
37 |
36
|
biimpd |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ X e. ( Vtx ` G ) ) -> ( ( lastS ` W ) =/= ( W ` 0 ) -> ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) |
38 |
37
|
impr |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) |
39 |
13 38
|
jca |
|- ( ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) /\ ( X e. ( Vtx ` G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) ) -> ( ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) |
40 |
39
|
exp32 |
|- ( ( N e. NN0 /\ W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> ( X e. ( Vtx ` G ) -> ( ( lastS ` W ) =/= ( W ` 0 ) -> ( ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) ) ) |
41 |
1 40
|
syl |
|- ( W e. ( N WWalksN G ) -> ( X e. ( Vtx ` G ) -> ( ( lastS ` W ) =/= ( W ` 0 ) -> ( ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) ) ) |
42 |
41
|
3imp21 |
|- ( ( X e. ( Vtx ` G ) /\ W e. ( N WWalksN G ) /\ ( lastS ` W ) =/= ( W ` 0 ) ) -> ( ( ( W ++ <" X "> ) ` 0 ) = ( W ` 0 ) /\ ( ( W ++ <" X "> ) ` N ) =/= ( W ` 0 ) ) ) |