Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk3lem2.c |
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) |
2 |
|
numclwwlk3lem2.h |
|- H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) |
3 |
1 2
|
numclwwlk3lem2lem |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X ( ClWWalksNOn ` G ) N ) = ( ( X H N ) u. ( X C N ) ) ) |
4 |
3
|
adantll |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( X ( ClWWalksNOn ` G ) N ) = ( ( X H N ) u. ( X C N ) ) ) |
5 |
4
|
fveq2d |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) N ) ) = ( # ` ( ( X H N ) u. ( X C N ) ) ) ) |
6 |
2
|
numclwwlkovh0 |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } ) |
7 |
6
|
adantll |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } ) |
8 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
9 |
8
|
fusgrvtxfi |
|- ( G e. FinUSGraph -> ( Vtx ` G ) e. Fin ) |
10 |
9
|
ad2antrr |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( Vtx ` G ) e. Fin ) |
11 |
8
|
clwwlknonfin |
|- ( ( Vtx ` G ) e. Fin -> ( X ( ClWWalksNOn ` G ) N ) e. Fin ) |
12 |
|
rabfi |
|- ( ( X ( ClWWalksNOn ` G ) N ) e. Fin -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } e. Fin ) |
13 |
10 11 12
|
3syl |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } e. Fin ) |
14 |
7 13
|
eqeltrd |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) e. Fin ) |
15 |
1
|
2clwwlk |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) |
16 |
15
|
adantll |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) |
17 |
|
rabfi |
|- ( ( X ( ClWWalksNOn ` G ) N ) e. Fin -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. Fin ) |
18 |
10 11 17
|
3syl |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } e. Fin ) |
19 |
16 18
|
eqeltrd |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) e. Fin ) |
20 |
7 16
|
ineq12d |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( ( X H N ) i^i ( X C N ) ) = ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } i^i { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) |
21 |
|
inrab |
|- ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } i^i { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) } |
22 |
|
exmid |
|- ( ( w ` ( N - 2 ) ) = X \/ -. ( w ` ( N - 2 ) ) = X ) |
23 |
|
ianor |
|- ( -. ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) <-> ( -. ( w ` ( N - 2 ) ) =/= X \/ -. ( w ` ( N - 2 ) ) = X ) ) |
24 |
|
nne |
|- ( -. ( w ` ( N - 2 ) ) =/= X <-> ( w ` ( N - 2 ) ) = X ) |
25 |
24
|
orbi1i |
|- ( ( -. ( w ` ( N - 2 ) ) =/= X \/ -. ( w ` ( N - 2 ) ) = X ) <-> ( ( w ` ( N - 2 ) ) = X \/ -. ( w ` ( N - 2 ) ) = X ) ) |
26 |
23 25
|
bitri |
|- ( -. ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( w ` ( N - 2 ) ) = X \/ -. ( w ` ( N - 2 ) ) = X ) ) |
27 |
22 26
|
mpbir |
|- -. ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) |
28 |
27
|
rgenw |
|- A. w e. ( X ( ClWWalksNOn ` G ) N ) -. ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) |
29 |
|
rabeq0 |
|- ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) } = (/) <-> A. w e. ( X ( ClWWalksNOn ` G ) N ) -. ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) ) |
30 |
28 29
|
mpbir |
|- { w e. ( X ( ClWWalksNOn ` G ) N ) | ( ( w ` ( N - 2 ) ) =/= X /\ ( w ` ( N - 2 ) ) = X ) } = (/) |
31 |
21 30
|
eqtri |
|- ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } i^i { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) = (/) |
32 |
20 31
|
eqtrdi |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( ( X H N ) i^i ( X C N ) ) = (/) ) |
33 |
|
hashun |
|- ( ( ( X H N ) e. Fin /\ ( X C N ) e. Fin /\ ( ( X H N ) i^i ( X C N ) ) = (/) ) -> ( # ` ( ( X H N ) u. ( X C N ) ) ) = ( ( # ` ( X H N ) ) + ( # ` ( X C N ) ) ) ) |
34 |
14 19 32 33
|
syl3anc |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( # ` ( ( X H N ) u. ( X C N ) ) ) = ( ( # ` ( X H N ) ) + ( # ` ( X C N ) ) ) ) |
35 |
5 34
|
eqtrd |
|- ( ( ( G e. FinUSGraph /\ X e. V ) /\ N e. ( ZZ>= ` 2 ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) N ) ) = ( ( # ` ( X H N ) ) + ( # ` ( X C N ) ) ) ) |