Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk3lem2.c |
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) |
2 |
|
numclwwlk3lem2.h |
|- H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) |
3 |
2
|
numclwwlkovh0 |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } ) |
4 |
1
|
2clwwlk |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) |
5 |
3 4
|
uneq12d |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( ( X H N ) u. ( X C N ) ) = ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } u. { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) ) |
6 |
|
unrab |
|- ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } u. { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( ( w ` ( N - 2 ) ) =/= X \/ ( w ` ( N - 2 ) ) = X ) } |
7 |
|
exmidne |
|- ( ( w ` ( N - 2 ) ) = X \/ ( w ` ( N - 2 ) ) =/= X ) |
8 |
|
orcom |
|- ( ( ( w ` ( N - 2 ) ) =/= X \/ ( w ` ( N - 2 ) ) = X ) <-> ( ( w ` ( N - 2 ) ) = X \/ ( w ` ( N - 2 ) ) =/= X ) ) |
9 |
7 8
|
mpbir |
|- ( ( w ` ( N - 2 ) ) =/= X \/ ( w ` ( N - 2 ) ) = X ) |
10 |
9
|
a1i |
|- ( w e. ( X ( ClWWalksNOn ` G ) N ) -> ( ( w ` ( N - 2 ) ) =/= X \/ ( w ` ( N - 2 ) ) = X ) ) |
11 |
10
|
rabeqc |
|- { w e. ( X ( ClWWalksNOn ` G ) N ) | ( ( w ` ( N - 2 ) ) =/= X \/ ( w ` ( N - 2 ) ) = X ) } = ( X ( ClWWalksNOn ` G ) N ) |
12 |
6 11
|
eqtri |
|- ( { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } u. { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) = ( X ( ClWWalksNOn ` G ) N ) |
13 |
5 12
|
eqtr2di |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X ( ClWWalksNOn ` G ) N ) = ( ( X H N ) u. ( X C N ) ) ) |