Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk3.v |
|- V = ( Vtx ` G ) |
2 |
|
simpl1 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> G RegUSGraph K ) |
3 |
|
simpr1 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> X e. V ) |
4 |
1
|
finrusgrfusgr |
|- ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph ) |
5 |
4
|
3adant2 |
|- ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> G e. FinUSGraph ) |
6 |
5
|
adantl |
|- ( ( X e. V /\ ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) ) -> G e. FinUSGraph ) |
7 |
|
simpr1 |
|- ( ( X e. V /\ ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) ) -> G RegUSGraph K ) |
8 |
|
ne0i |
|- ( X e. V -> V =/= (/) ) |
9 |
8
|
adantr |
|- ( ( X e. V /\ ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) ) -> V =/= (/) ) |
10 |
1
|
frusgrnn0 |
|- ( ( G e. FinUSGraph /\ G RegUSGraph K /\ V =/= (/) ) -> K e. NN0 ) |
11 |
6 7 9 10
|
syl3anc |
|- ( ( X e. V /\ ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) ) -> K e. NN0 ) |
12 |
11
|
ex |
|- ( X e. V -> ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> K e. NN0 ) ) |
13 |
12
|
3ad2ant1 |
|- ( ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) -> ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> K e. NN0 ) ) |
14 |
13
|
impcom |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> K e. NN0 ) |
15 |
2 3 14
|
3jca |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) ) |
16 |
|
simpr3 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> 2 || ( K - 1 ) ) |
17 |
1
|
numclwwlk5lem |
|- ( ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) -> ( 2 || ( K - 1 ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) ) |
18 |
15 16 17
|
sylc |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) |
19 |
18
|
a1i |
|- ( P = 2 -> ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) ) |
20 |
|
eleq1 |
|- ( P = 2 -> ( P e. Prime <-> 2 e. Prime ) ) |
21 |
|
breq1 |
|- ( P = 2 -> ( P || ( K - 1 ) <-> 2 || ( K - 1 ) ) ) |
22 |
20 21
|
3anbi23d |
|- ( P = 2 -> ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) <-> ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) ) |
23 |
22
|
anbi2d |
|- ( P = 2 -> ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) <-> ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ 2 e. Prime /\ 2 || ( K - 1 ) ) ) ) ) |
24 |
|
oveq2 |
|- ( P = 2 -> ( X ( ClWWalksNOn ` G ) P ) = ( X ( ClWWalksNOn ` G ) 2 ) ) |
25 |
24
|
fveq2d |
|- ( P = 2 -> ( # ` ( X ( ClWWalksNOn ` G ) P ) ) = ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) ) |
26 |
|
id |
|- ( P = 2 -> P = 2 ) |
27 |
25 26
|
oveq12d |
|- ( P = 2 -> ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) ) |
28 |
27
|
eqeq1d |
|- ( P = 2 -> ( ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 <-> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) ) |
29 |
19 23 28
|
3imtr4d |
|- ( P = 2 -> ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 ) ) |
30 |
|
3simpa |
|- ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> ( G RegUSGraph K /\ G e. FriendGraph ) ) |
31 |
30
|
adantr |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( G RegUSGraph K /\ G e. FriendGraph ) ) |
32 |
31
|
adantl |
|- ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( G RegUSGraph K /\ G e. FriendGraph ) ) |
33 |
|
simprl3 |
|- ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> V e. Fin ) |
34 |
|
simprr1 |
|- ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> X e. V ) |
35 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
36 |
|
oddprmge3 |
|- ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 3 ) ) |
37 |
35 36
|
sylbir |
|- ( ( P e. Prime /\ P =/= 2 ) -> P e. ( ZZ>= ` 3 ) ) |
38 |
37
|
ex |
|- ( P e. Prime -> ( P =/= 2 -> P e. ( ZZ>= ` 3 ) ) ) |
39 |
38
|
3ad2ant2 |
|- ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) -> ( P =/= 2 -> P e. ( ZZ>= ` 3 ) ) ) |
40 |
39
|
adantl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( P =/= 2 -> P e. ( ZZ>= ` 3 ) ) ) |
41 |
40
|
impcom |
|- ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> P e. ( ZZ>= ` 3 ) ) |
42 |
1
|
numclwwlk3 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V e. Fin /\ X e. V /\ P e. ( ZZ>= ` 3 ) ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) P ) ) = ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) + ( K ^ ( P - 2 ) ) ) ) |
43 |
32 33 34 41 42
|
syl13anc |
|- ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) P ) ) = ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) + ( K ^ ( P - 2 ) ) ) ) |
44 |
43
|
oveq1d |
|- ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) + ( K ^ ( P - 2 ) ) ) mod P ) ) |
45 |
12
|
3ad2ant1 |
|- ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) -> ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> K e. NN0 ) ) |
46 |
45
|
impcom |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> K e. NN0 ) |
47 |
46
|
nn0zd |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> K e. ZZ ) |
48 |
|
peano2zm |
|- ( K e. ZZ -> ( K - 1 ) e. ZZ ) |
49 |
|
zre |
|- ( ( K - 1 ) e. ZZ -> ( K - 1 ) e. RR ) |
50 |
47 48 49
|
3syl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( K - 1 ) e. RR ) |
51 |
|
simpl3 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> V e. Fin ) |
52 |
1
|
clwwlknonfin |
|- ( V e. Fin -> ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) e. Fin ) |
53 |
|
hashcl |
|- ( ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) e. Fin -> ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) e. NN0 ) |
54 |
51 52 53
|
3syl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) e. NN0 ) |
55 |
54
|
nn0red |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) e. RR ) |
56 |
50 55
|
remulcld |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) e. RR ) |
57 |
46
|
nn0red |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> K e. RR ) |
58 |
|
prmm2nn0 |
|- ( P e. Prime -> ( P - 2 ) e. NN0 ) |
59 |
58
|
3ad2ant2 |
|- ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) -> ( P - 2 ) e. NN0 ) |
60 |
59
|
adantl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( P - 2 ) e. NN0 ) |
61 |
57 60
|
reexpcld |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( K ^ ( P - 2 ) ) e. RR ) |
62 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
63 |
62
|
nnrpd |
|- ( P e. Prime -> P e. RR+ ) |
64 |
63
|
3ad2ant2 |
|- ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) -> P e. RR+ ) |
65 |
64
|
adantl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> P e. RR+ ) |
66 |
56 61 65
|
3jca |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) e. RR /\ ( K ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) ) |
67 |
66
|
adantl |
|- ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) e. RR /\ ( K ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) ) |
68 |
|
modaddabs |
|- ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) e. RR /\ ( K ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) -> ( ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) + ( K ^ ( P - 2 ) ) ) mod P ) ) |
69 |
68
|
eqcomd |
|- ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) e. RR /\ ( K ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) -> ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) + ( K ^ ( P - 2 ) ) ) mod P ) = ( ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) mod P ) ) |
70 |
67 69
|
syl |
|- ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) + ( K ^ ( P - 2 ) ) ) mod P ) = ( ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) mod P ) ) |
71 |
62
|
3ad2ant2 |
|- ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) -> P e. NN ) |
72 |
71
|
adantl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> P e. NN ) |
73 |
|
nn0z |
|- ( K e. NN0 -> K e. ZZ ) |
74 |
46 73 48
|
3syl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( K - 1 ) e. ZZ ) |
75 |
54
|
nn0zd |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) e. ZZ ) |
76 |
72 74 75
|
3jca |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( P e. NN /\ ( K - 1 ) e. ZZ /\ ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) e. ZZ ) ) |
77 |
|
simpr3 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> P || ( K - 1 ) ) |
78 |
|
mulmoddvds |
|- ( ( P e. NN /\ ( K - 1 ) e. ZZ /\ ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) e. ZZ ) -> ( P || ( K - 1 ) -> ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) = 0 ) ) |
79 |
76 77 78
|
sylc |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) = 0 ) |
80 |
|
simpr2 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> P e. Prime ) |
81 |
80 47
|
jca |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( P e. Prime /\ K e. ZZ ) ) |
82 |
|
powm2modprm |
|- ( ( P e. Prime /\ K e. ZZ ) -> ( P || ( K - 1 ) -> ( ( K ^ ( P - 2 ) ) mod P ) = 1 ) ) |
83 |
81 77 82
|
sylc |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( K ^ ( P - 2 ) ) mod P ) = 1 ) |
84 |
79 83
|
oveq12d |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) = ( 0 + 1 ) ) |
85 |
84
|
oveq1d |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( 0 + 1 ) mod P ) ) |
86 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
87 |
86
|
oveq1i |
|- ( ( 0 + 1 ) mod P ) = ( 1 mod P ) |
88 |
62
|
nnred |
|- ( P e. Prime -> P e. RR ) |
89 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
90 |
|
1mod |
|- ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) |
91 |
88 89 90
|
syl2anc |
|- ( P e. Prime -> ( 1 mod P ) = 1 ) |
92 |
87 91
|
syl5eq |
|- ( P e. Prime -> ( ( 0 + 1 ) mod P ) = 1 ) |
93 |
92
|
3ad2ant2 |
|- ( ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) -> ( ( 0 + 1 ) mod P ) = 1 ) |
94 |
93
|
adantl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( 0 + 1 ) mod P ) = 1 ) |
95 |
85 94
|
eqtrd |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) |
96 |
95
|
adantl |
|- ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( ( ( ( ( K - 1 ) x. ( # ` ( X ( ClWWalksNOn ` G ) ( P - 2 ) ) ) ) mod P ) + ( ( K ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) |
97 |
44 70 96
|
3eqtrd |
|- ( ( P =/= 2 /\ ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 ) |
98 |
97
|
ex |
|- ( P =/= 2 -> ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 ) ) |
99 |
29 98
|
pm2.61ine |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( X e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 ) |