Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk3.v |
|- V = ( Vtx ` G ) |
2 |
1
|
eleq2i |
|- ( X e. V <-> X e. ( Vtx ` G ) ) |
3 |
|
clwwlknon2num |
|- ( ( G RegUSGraph K /\ X e. ( Vtx ` G ) ) -> ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K ) |
4 |
2 3
|
sylan2b |
|- ( ( G RegUSGraph K /\ X e. V ) -> ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K ) |
5 |
4
|
3adant3 |
|- ( ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) -> ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K ) |
6 |
|
oveq1 |
|- ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = ( K mod 2 ) ) |
7 |
6
|
ad2antrr |
|- ( ( ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K /\ ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) ) /\ 2 || ( K - 1 ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = ( K mod 2 ) ) |
8 |
|
2prm |
|- 2 e. Prime |
9 |
|
nn0z |
|- ( K e. NN0 -> K e. ZZ ) |
10 |
|
modprm1div |
|- ( ( 2 e. Prime /\ K e. ZZ ) -> ( ( K mod 2 ) = 1 <-> 2 || ( K - 1 ) ) ) |
11 |
8 9 10
|
sylancr |
|- ( K e. NN0 -> ( ( K mod 2 ) = 1 <-> 2 || ( K - 1 ) ) ) |
12 |
11
|
biimprd |
|- ( K e. NN0 -> ( 2 || ( K - 1 ) -> ( K mod 2 ) = 1 ) ) |
13 |
12
|
3ad2ant3 |
|- ( ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) -> ( 2 || ( K - 1 ) -> ( K mod 2 ) = 1 ) ) |
14 |
13
|
adantl |
|- ( ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K /\ ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) ) -> ( 2 || ( K - 1 ) -> ( K mod 2 ) = 1 ) ) |
15 |
14
|
imp |
|- ( ( ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K /\ ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) ) /\ 2 || ( K - 1 ) ) -> ( K mod 2 ) = 1 ) |
16 |
7 15
|
eqtrd |
|- ( ( ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K /\ ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) ) /\ 2 || ( K - 1 ) ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) |
17 |
16
|
ex |
|- ( ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) = K /\ ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) ) -> ( 2 || ( K - 1 ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) ) |
18 |
5 17
|
mpancom |
|- ( ( G RegUSGraph K /\ X e. V /\ K e. NN0 ) -> ( 2 || ( K - 1 ) -> ( ( # ` ( X ( ClWWalksNOn ` G ) 2 ) ) mod 2 ) = 1 ) ) |