| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwwlk6.v |
|- V = ( Vtx ` G ) |
| 2 |
1
|
finrusgrfusgr |
|- ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph ) |
| 3 |
2
|
3adant2 |
|- ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> G e. FinUSGraph ) |
| 4 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 5 |
4
|
adantr |
|- ( ( P e. Prime /\ P || ( K - 1 ) ) -> P e. NN ) |
| 6 |
1
|
numclwwlk4 |
|- ( ( G e. FinUSGraph /\ P e. NN ) -> ( # ` ( P ClWWalksN G ) ) = sum_ x e. V ( # ` ( x ( ClWWalksNOn ` G ) P ) ) ) |
| 7 |
3 5 6
|
syl2an |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( # ` ( P ClWWalksN G ) ) = sum_ x e. V ( # ` ( x ( ClWWalksNOn ` G ) P ) ) ) |
| 8 |
7
|
oveq1d |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = ( sum_ x e. V ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) ) |
| 9 |
5
|
adantl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> P e. NN ) |
| 10 |
|
simp3 |
|- ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> V e. Fin ) |
| 11 |
10
|
adantr |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> V e. Fin ) |
| 12 |
11
|
adantr |
|- ( ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) /\ x e. V ) -> V e. Fin ) |
| 13 |
1
|
clwwlknonfin |
|- ( V e. Fin -> ( x ( ClWWalksNOn ` G ) P ) e. Fin ) |
| 14 |
|
hashcl |
|- ( ( x ( ClWWalksNOn ` G ) P ) e. Fin -> ( # ` ( x ( ClWWalksNOn ` G ) P ) ) e. NN0 ) |
| 15 |
12 13 14
|
3syl |
|- ( ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) /\ x e. V ) -> ( # ` ( x ( ClWWalksNOn ` G ) P ) ) e. NN0 ) |
| 16 |
15
|
nn0zd |
|- ( ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) /\ x e. V ) -> ( # ` ( x ( ClWWalksNOn ` G ) P ) ) e. ZZ ) |
| 17 |
16
|
ralrimiva |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> A. x e. V ( # ` ( x ( ClWWalksNOn ` G ) P ) ) e. ZZ ) |
| 18 |
9 11 17
|
modfsummod |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( sum_ x e. V ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) = ( sum_ x e. V ( ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) mod P ) ) |
| 19 |
|
simpl |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) ) |
| 20 |
|
simpr |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( P e. Prime /\ P || ( K - 1 ) ) ) |
| 21 |
20
|
anim1ci |
|- ( ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) /\ x e. V ) -> ( x e. V /\ ( P e. Prime /\ P || ( K - 1 ) ) ) ) |
| 22 |
|
3anass |
|- ( ( x e. V /\ P e. Prime /\ P || ( K - 1 ) ) <-> ( x e. V /\ ( P e. Prime /\ P || ( K - 1 ) ) ) ) |
| 23 |
21 22
|
sylibr |
|- ( ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) /\ x e. V ) -> ( x e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) |
| 24 |
1
|
numclwwlk5 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( x e. V /\ P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 ) |
| 25 |
19 23 24
|
syl2an2r |
|- ( ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) /\ x e. V ) -> ( ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) = 1 ) |
| 26 |
25
|
sumeq2dv |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> sum_ x e. V ( ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) = sum_ x e. V 1 ) |
| 27 |
26
|
oveq1d |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( sum_ x e. V ( ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) mod P ) = ( sum_ x e. V 1 mod P ) ) |
| 28 |
18 27
|
eqtrd |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( sum_ x e. V ( # ` ( x ( ClWWalksNOn ` G ) P ) ) mod P ) = ( sum_ x e. V 1 mod P ) ) |
| 29 |
|
1cnd |
|- ( ( P e. Prime /\ P || ( K - 1 ) ) -> 1 e. CC ) |
| 30 |
|
fsumconst |
|- ( ( V e. Fin /\ 1 e. CC ) -> sum_ x e. V 1 = ( ( # ` V ) x. 1 ) ) |
| 31 |
10 29 30
|
syl2an |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> sum_ x e. V 1 = ( ( # ` V ) x. 1 ) ) |
| 32 |
|
hashcl |
|- ( V e. Fin -> ( # ` V ) e. NN0 ) |
| 33 |
32
|
nn0red |
|- ( V e. Fin -> ( # ` V ) e. RR ) |
| 34 |
|
ax-1rid |
|- ( ( # ` V ) e. RR -> ( ( # ` V ) x. 1 ) = ( # ` V ) ) |
| 35 |
33 34
|
syl |
|- ( V e. Fin -> ( ( # ` V ) x. 1 ) = ( # ` V ) ) |
| 36 |
35
|
3ad2ant3 |
|- ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) -> ( ( # ` V ) x. 1 ) = ( # ` V ) ) |
| 37 |
36
|
adantr |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` V ) x. 1 ) = ( # ` V ) ) |
| 38 |
31 37
|
eqtrd |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> sum_ x e. V 1 = ( # ` V ) ) |
| 39 |
38
|
oveq1d |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( sum_ x e. V 1 mod P ) = ( ( # ` V ) mod P ) ) |
| 40 |
8 28 39
|
3eqtrd |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = ( ( # ` V ) mod P ) ) |