Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk6.v |
|- V = ( Vtx ` G ) |
2 |
|
simpll |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> G RegUSGraph K ) |
3 |
|
simplr |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> G e. FriendGraph ) |
4 |
|
simprr |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> V e. Fin ) |
5 |
2 3 4
|
3jca |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) ) |
6 |
1
|
numclwwlk6 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = ( ( # ` V ) mod P ) ) |
7 |
5 6
|
stoic3 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = ( ( # ` V ) mod P ) ) |
8 |
|
simp2 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( V =/= (/) /\ V e. Fin ) ) |
9 |
8
|
ancomd |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( V e. Fin /\ V =/= (/) ) ) |
10 |
|
simp1 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( G RegUSGraph K /\ G e. FriendGraph ) ) |
11 |
10
|
ancomd |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( G e. FriendGraph /\ G RegUSGraph K ) ) |
12 |
1
|
frrusgrord |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |
13 |
9 11 12
|
sylc |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) |
14 |
13
|
oveq1d |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` V ) mod P ) = ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) ) |
15 |
1
|
numclwwlk7lem |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> K e. NN0 ) |
16 |
|
nn0cn |
|- ( K e. NN0 -> K e. CC ) |
17 |
|
peano2cnm |
|- ( K e. CC -> ( K - 1 ) e. CC ) |
18 |
16 17
|
syl |
|- ( K e. NN0 -> ( K - 1 ) e. CC ) |
19 |
16 18
|
mulcomd |
|- ( K e. NN0 -> ( K x. ( K - 1 ) ) = ( ( K - 1 ) x. K ) ) |
20 |
19
|
oveq1d |
|- ( K e. NN0 -> ( ( K x. ( K - 1 ) ) mod P ) = ( ( ( K - 1 ) x. K ) mod P ) ) |
21 |
20
|
adantr |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( K x. ( K - 1 ) ) mod P ) = ( ( ( K - 1 ) x. K ) mod P ) ) |
22 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
23 |
22
|
ad2antrl |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> P e. NN ) |
24 |
|
nn0z |
|- ( K e. NN0 -> K e. ZZ ) |
25 |
|
peano2zm |
|- ( K e. ZZ -> ( K - 1 ) e. ZZ ) |
26 |
24 25
|
syl |
|- ( K e. NN0 -> ( K - 1 ) e. ZZ ) |
27 |
26
|
adantr |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( K - 1 ) e. ZZ ) |
28 |
24
|
adantr |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> K e. ZZ ) |
29 |
23 27 28
|
3jca |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( P e. NN /\ ( K - 1 ) e. ZZ /\ K e. ZZ ) ) |
30 |
|
simprr |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> P || ( K - 1 ) ) |
31 |
|
mulmoddvds |
|- ( ( P e. NN /\ ( K - 1 ) e. ZZ /\ K e. ZZ ) -> ( P || ( K - 1 ) -> ( ( ( K - 1 ) x. K ) mod P ) = 0 ) ) |
32 |
29 30 31
|
sylc |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K - 1 ) x. K ) mod P ) = 0 ) |
33 |
21 32
|
eqtrd |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( K x. ( K - 1 ) ) mod P ) = 0 ) |
34 |
22
|
nnred |
|- ( P e. Prime -> P e. RR ) |
35 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
36 |
34 35
|
jca |
|- ( P e. Prime -> ( P e. RR /\ 1 < P ) ) |
37 |
36
|
ad2antrl |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( P e. RR /\ 1 < P ) ) |
38 |
|
1mod |
|- ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) |
39 |
37 38
|
syl |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( 1 mod P ) = 1 ) |
40 |
33 39
|
oveq12d |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K x. ( K - 1 ) ) mod P ) + ( 1 mod P ) ) = ( 0 + 1 ) ) |
41 |
40
|
oveq1d |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( ( K x. ( K - 1 ) ) mod P ) + ( 1 mod P ) ) mod P ) = ( ( 0 + 1 ) mod P ) ) |
42 |
|
nn0re |
|- ( K e. NN0 -> K e. RR ) |
43 |
|
peano2rem |
|- ( K e. RR -> ( K - 1 ) e. RR ) |
44 |
42 43
|
syl |
|- ( K e. NN0 -> ( K - 1 ) e. RR ) |
45 |
42 44
|
remulcld |
|- ( K e. NN0 -> ( K x. ( K - 1 ) ) e. RR ) |
46 |
45
|
adantr |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( K x. ( K - 1 ) ) e. RR ) |
47 |
|
1red |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> 1 e. RR ) |
48 |
22
|
nnrpd |
|- ( P e. Prime -> P e. RR+ ) |
49 |
48
|
ad2antrl |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> P e. RR+ ) |
50 |
|
modaddabs |
|- ( ( ( K x. ( K - 1 ) ) e. RR /\ 1 e. RR /\ P e. RR+ ) -> ( ( ( ( K x. ( K - 1 ) ) mod P ) + ( 1 mod P ) ) mod P ) = ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) ) |
51 |
46 47 49 50
|
syl3anc |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( ( K x. ( K - 1 ) ) mod P ) + ( 1 mod P ) ) mod P ) = ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) ) |
52 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
53 |
52
|
oveq1i |
|- ( ( 0 + 1 ) mod P ) = ( 1 mod P ) |
54 |
34 35 38
|
syl2anc |
|- ( P e. Prime -> ( 1 mod P ) = 1 ) |
55 |
54
|
ad2antrl |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( 1 mod P ) = 1 ) |
56 |
53 55
|
syl5eq |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( 0 + 1 ) mod P ) = 1 ) |
57 |
41 51 56
|
3eqtr3d |
|- ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) = 1 ) |
58 |
15 57
|
stoic3 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) = 1 ) |
59 |
7 14 58
|
3eqtrd |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = 1 ) |