| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlk6.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> G RegUSGraph K )  | 
						
						
							| 3 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> G e. FriendGraph )  | 
						
						
							| 4 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> V e. Fin )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							3jca | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) )  | 
						
						
							| 6 | 
							
								1
							 | 
							numclwwlk6 | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = ( ( # ` V ) mod P ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							stoic3 | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = ( ( # ` V ) mod P ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( V =/= (/) /\ V e. Fin ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ancomd | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( V e. Fin /\ V =/= (/) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( G RegUSGraph K /\ G e. FriendGraph ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ancomd | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( G e. FriendGraph /\ G RegUSGraph K ) )  | 
						
						
							| 12 | 
							
								1
							 | 
							frrusgrord | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) )  | 
						
						
							| 13 | 
							
								9 11 12
							 | 
							sylc | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq1d | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` V ) mod P ) = ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) )  | 
						
						
							| 15 | 
							
								1
							 | 
							numclwwlk7lem | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> K e. NN0 )  | 
						
						
							| 16 | 
							
								
							 | 
							nn0cn | 
							 |-  ( K e. NN0 -> K e. CC )  | 
						
						
							| 17 | 
							
								
							 | 
							peano2cnm | 
							 |-  ( K e. CC -> ( K - 1 ) e. CC )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							 |-  ( K e. NN0 -> ( K - 1 ) e. CC )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							mulcomd | 
							 |-  ( K e. NN0 -> ( K x. ( K - 1 ) ) = ( ( K - 1 ) x. K ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq1d | 
							 |-  ( K e. NN0 -> ( ( K x. ( K - 1 ) ) mod P ) = ( ( ( K - 1 ) x. K ) mod P ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( K x. ( K - 1 ) ) mod P ) = ( ( ( K - 1 ) x. K ) mod P ) )  | 
						
						
							| 22 | 
							
								
							 | 
							prmnn | 
							 |-  ( P e. Prime -> P e. NN )  | 
						
						
							| 23 | 
							
								22
							 | 
							ad2antrl | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> P e. NN )  | 
						
						
							| 24 | 
							
								
							 | 
							nn0z | 
							 |-  ( K e. NN0 -> K e. ZZ )  | 
						
						
							| 25 | 
							
								
							 | 
							peano2zm | 
							 |-  ( K e. ZZ -> ( K - 1 ) e. ZZ )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( K e. NN0 -> ( K - 1 ) e. ZZ )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantr | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( K - 1 ) e. ZZ )  | 
						
						
							| 28 | 
							
								24
							 | 
							adantr | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> K e. ZZ )  | 
						
						
							| 29 | 
							
								23 27 28
							 | 
							3jca | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( P e. NN /\ ( K - 1 ) e. ZZ /\ K e. ZZ ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simprr | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> P || ( K - 1 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							mulmoddvds | 
							 |-  ( ( P e. NN /\ ( K - 1 ) e. ZZ /\ K e. ZZ ) -> ( P || ( K - 1 ) -> ( ( ( K - 1 ) x. K ) mod P ) = 0 ) )  | 
						
						
							| 32 | 
							
								29 30 31
							 | 
							sylc | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K - 1 ) x. K ) mod P ) = 0 )  | 
						
						
							| 33 | 
							
								21 32
							 | 
							eqtrd | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( K x. ( K - 1 ) ) mod P ) = 0 )  | 
						
						
							| 34 | 
							
								22
							 | 
							nnred | 
							 |-  ( P e. Prime -> P e. RR )  | 
						
						
							| 35 | 
							
								
							 | 
							prmgt1 | 
							 |-  ( P e. Prime -> 1 < P )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							jca | 
							 |-  ( P e. Prime -> ( P e. RR /\ 1 < P ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ad2antrl | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( P e. RR /\ 1 < P ) )  | 
						
						
							| 38 | 
							
								
							 | 
							1mod | 
							 |-  ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							syl | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( 1 mod P ) = 1 )  | 
						
						
							| 40 | 
							
								33 39
							 | 
							oveq12d | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K x. ( K - 1 ) ) mod P ) + ( 1 mod P ) ) = ( 0 + 1 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							oveq1d | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( ( K x. ( K - 1 ) ) mod P ) + ( 1 mod P ) ) mod P ) = ( ( 0 + 1 ) mod P ) )  | 
						
						
							| 42 | 
							
								
							 | 
							nn0re | 
							 |-  ( K e. NN0 -> K e. RR )  | 
						
						
							| 43 | 
							
								
							 | 
							peano2rem | 
							 |-  ( K e. RR -> ( K - 1 ) e. RR )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							syl | 
							 |-  ( K e. NN0 -> ( K - 1 ) e. RR )  | 
						
						
							| 45 | 
							
								42 44
							 | 
							remulcld | 
							 |-  ( K e. NN0 -> ( K x. ( K - 1 ) ) e. RR )  | 
						
						
							| 46 | 
							
								45
							 | 
							adantr | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( K x. ( K - 1 ) ) e. RR )  | 
						
						
							| 47 | 
							
								
							 | 
							1red | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> 1 e. RR )  | 
						
						
							| 48 | 
							
								22
							 | 
							nnrpd | 
							 |-  ( P e. Prime -> P e. RR+ )  | 
						
						
							| 49 | 
							
								48
							 | 
							ad2antrl | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> P e. RR+ )  | 
						
						
							| 50 | 
							
								
							 | 
							modaddabs | 
							 |-  ( ( ( K x. ( K - 1 ) ) e. RR /\ 1 e. RR /\ P e. RR+ ) -> ( ( ( ( K x. ( K - 1 ) ) mod P ) + ( 1 mod P ) ) mod P ) = ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) )  | 
						
						
							| 51 | 
							
								46 47 49 50
							 | 
							syl3anc | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( ( K x. ( K - 1 ) ) mod P ) + ( 1 mod P ) ) mod P ) = ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) )  | 
						
						
							| 52 | 
							
								
							 | 
							0p1e1 | 
							 |-  ( 0 + 1 ) = 1  | 
						
						
							| 53 | 
							
								52
							 | 
							oveq1i | 
							 |-  ( ( 0 + 1 ) mod P ) = ( 1 mod P )  | 
						
						
							| 54 | 
							
								34 35 38
							 | 
							syl2anc | 
							 |-  ( P e. Prime -> ( 1 mod P ) = 1 )  | 
						
						
							| 55 | 
							
								54
							 | 
							ad2antrl | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( 1 mod P ) = 1 )  | 
						
						
							| 56 | 
							
								53 55
							 | 
							eqtrid | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( 0 + 1 ) mod P ) = 1 )  | 
						
						
							| 57 | 
							
								41 51 56
							 | 
							3eqtr3d | 
							 |-  ( ( K e. NN0 /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) = 1 )  | 
						
						
							| 58 | 
							
								15 57
							 | 
							stoic3 | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( ( K x. ( K - 1 ) ) + 1 ) mod P ) = 1 )  | 
						
						
							| 59 | 
							
								7 14 58
							 | 
							3eqtrd | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( P e. Prime /\ P || ( K - 1 ) ) ) -> ( ( # ` ( P ClWWalksN G ) ) mod P ) = 1 )  |