Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlkovh.h |
|- H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) |
2 |
1
|
numclwwlkovh0 |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } ) |
3 |
|
isclwwlknon |
|- ( w e. ( X ( ClWWalksNOn ` G ) N ) <-> ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) ) |
4 |
3
|
anbi1i |
|- ( ( w e. ( X ( ClWWalksNOn ` G ) N ) /\ ( w ` ( N - 2 ) ) =/= X ) <-> ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) ) |
5 |
|
simpll |
|- ( ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) -> w e. ( N ClWWalksN G ) ) |
6 |
|
simplr |
|- ( ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) -> ( w ` 0 ) = X ) |
7 |
|
neeq2 |
|- ( X = ( w ` 0 ) -> ( ( w ` ( N - 2 ) ) =/= X <-> ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) |
8 |
7
|
eqcoms |
|- ( ( w ` 0 ) = X -> ( ( w ` ( N - 2 ) ) =/= X <-> ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) |
9 |
8
|
adantl |
|- ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) -> ( ( w ` ( N - 2 ) ) =/= X <-> ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) |
10 |
9
|
biimpa |
|- ( ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) -> ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) |
11 |
6 10
|
jca |
|- ( ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) -> ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) |
12 |
5 11
|
jca |
|- ( ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) -> ( w e. ( N ClWWalksN G ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) ) |
13 |
|
simpl |
|- ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) -> ( w ` 0 ) = X ) |
14 |
13
|
anim2i |
|- ( ( w e. ( N ClWWalksN G ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) -> ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) ) |
15 |
|
neeq2 |
|- ( ( w ` 0 ) = X -> ( ( w ` ( N - 2 ) ) =/= ( w ` 0 ) <-> ( w ` ( N - 2 ) ) =/= X ) ) |
16 |
15
|
biimpa |
|- ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) -> ( w ` ( N - 2 ) ) =/= X ) |
17 |
16
|
adantl |
|- ( ( w e. ( N ClWWalksN G ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) -> ( w ` ( N - 2 ) ) =/= X ) |
18 |
14 17
|
jca |
|- ( ( w e. ( N ClWWalksN G ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) -> ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) ) |
19 |
12 18
|
impbii |
|- ( ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) =/= X ) <-> ( w e. ( N ClWWalksN G ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) ) |
20 |
4 19
|
bitri |
|- ( ( w e. ( X ( ClWWalksNOn ` G ) N ) /\ ( w ` ( N - 2 ) ) =/= X ) <-> ( w e. ( N ClWWalksN G ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) ) ) |
21 |
20
|
rabbia2 |
|- { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } = { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) } |
22 |
2 21
|
eqtrdi |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) =/= ( w ` 0 ) ) } ) |