Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlkovh.h |
|- H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } ) |
2 |
|
oveq12 |
|- ( ( v = X /\ n = N ) -> ( v ( ClWWalksNOn ` G ) n ) = ( X ( ClWWalksNOn ` G ) N ) ) |
3 |
|
oveq1 |
|- ( n = N -> ( n - 2 ) = ( N - 2 ) ) |
4 |
3
|
adantl |
|- ( ( v = X /\ n = N ) -> ( n - 2 ) = ( N - 2 ) ) |
5 |
4
|
fveq2d |
|- ( ( v = X /\ n = N ) -> ( w ` ( n - 2 ) ) = ( w ` ( N - 2 ) ) ) |
6 |
|
simpl |
|- ( ( v = X /\ n = N ) -> v = X ) |
7 |
5 6
|
neeq12d |
|- ( ( v = X /\ n = N ) -> ( ( w ` ( n - 2 ) ) =/= v <-> ( w ` ( N - 2 ) ) =/= X ) ) |
8 |
2 7
|
rabeqbidv |
|- ( ( v = X /\ n = N ) -> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } ) |
9 |
|
ovex |
|- ( X ( ClWWalksNOn ` G ) N ) e. _V |
10 |
9
|
rabex |
|- { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } e. _V |
11 |
8 1 10
|
ovmpoa |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } ) |