Metamath Proof Explorer


Theorem numclwwlkovh0

Description: Value of operation H , mapping a vertex v and an integer n greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in Huneke p. 2. (Contributed by AV, 1-May-2022)

Ref Expression
Hypothesis numclwwlkovh.h
|- H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } )
Assertion numclwwlkovh0
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } )

Proof

Step Hyp Ref Expression
1 numclwwlkovh.h
 |-  H = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } )
2 oveq12
 |-  ( ( v = X /\ n = N ) -> ( v ( ClWWalksNOn ` G ) n ) = ( X ( ClWWalksNOn ` G ) N ) )
3 oveq1
 |-  ( n = N -> ( n - 2 ) = ( N - 2 ) )
4 3 adantl
 |-  ( ( v = X /\ n = N ) -> ( n - 2 ) = ( N - 2 ) )
5 4 fveq2d
 |-  ( ( v = X /\ n = N ) -> ( w ` ( n - 2 ) ) = ( w ` ( N - 2 ) ) )
6 simpl
 |-  ( ( v = X /\ n = N ) -> v = X )
7 5 6 neeq12d
 |-  ( ( v = X /\ n = N ) -> ( ( w ` ( n - 2 ) ) =/= v <-> ( w ` ( N - 2 ) ) =/= X ) )
8 2 7 rabeqbidv
 |-  ( ( v = X /\ n = N ) -> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) =/= v } = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } )
9 ovex
 |-  ( X ( ClWWalksNOn ` G ) N ) e. _V
10 9 rabex
 |-  { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } e. _V
11 8 1 10 ovmpoa
 |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X H N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) =/= X } )