| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlk.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							numclwwlk.q | 
							 |-  Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) | 
						
						
							| 3 | 
							
								
							 | 
							oveq1 | 
							 |-  ( n = N -> ( n WWalksN G ) = ( N WWalksN G ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							 |-  ( ( v = X /\ n = N ) -> ( n WWalksN G ) = ( N WWalksN G ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( v = X -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = X ) )  | 
						
						
							| 6 | 
							
								
							 | 
							neeq2 | 
							 |-  ( v = X -> ( ( lastS ` w ) =/= v <-> ( lastS ` w ) =/= X ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							anbi12d | 
							 |-  ( v = X -> ( ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( v = X /\ n = N ) -> ( ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) ) )  | 
						
						
							| 9 | 
							
								4 8
							 | 
							rabeqbidv | 
							 |-  ( ( v = X /\ n = N ) -> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) | 
						
						
							| 10 | 
							
								
							 | 
							ovex | 
							 |-  ( N WWalksN G ) e. _V  | 
						
						
							| 11 | 
							
								10
							 | 
							rabex | 
							 |-  { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } e. _V | 
						
						
							| 12 | 
							
								9 2 11
							 | 
							ovmpoa | 
							 |-  ( ( X e. V /\ N e. NN ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) |