Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk.v |
|- V = ( Vtx ` G ) |
2 |
|
numclwwlk.q |
|- Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) |
3 |
|
oveq1 |
|- ( n = N -> ( n WWalksN G ) = ( N WWalksN G ) ) |
4 |
3
|
adantl |
|- ( ( v = X /\ n = N ) -> ( n WWalksN G ) = ( N WWalksN G ) ) |
5 |
|
eqeq2 |
|- ( v = X -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = X ) ) |
6 |
|
neeq2 |
|- ( v = X -> ( ( lastS ` w ) =/= v <-> ( lastS ` w ) =/= X ) ) |
7 |
5 6
|
anbi12d |
|- ( v = X -> ( ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) ) ) |
8 |
7
|
adantr |
|- ( ( v = X /\ n = N ) -> ( ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) ) ) |
9 |
4 8
|
rabeqbidv |
|- ( ( v = X /\ n = N ) -> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) |
10 |
|
ovex |
|- ( N WWalksN G ) e. _V |
11 |
10
|
rabex |
|- { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } e. _V |
12 |
9 2 11
|
ovmpoa |
|- ( ( X e. V /\ N e. NN ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) |