Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk.v |
|- V = ( Vtx ` G ) |
2 |
|
numclwwlk.q |
|- Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) |
3 |
1 2
|
numclwwlkovq |
|- ( ( X e. V /\ N e. NN ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) |
4 |
3
|
adantl |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) |
5 |
4
|
fveq2d |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` ( X Q N ) ) = ( # ` { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) ) |
6 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
7 |
|
eqid |
|- { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } |
8 |
|
eqid |
|- ( X ( N WWalksNOn G ) X ) = ( X ( N WWalksNOn G ) X ) |
9 |
7 8 1
|
clwwlknclwwlkdifnum |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) = ( ( K ^ N ) - ( # ` ( X ( N WWalksNOn G ) X ) ) ) ) |
10 |
6 9
|
sylanr2 |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) = ( ( K ^ N ) - ( # ` ( X ( N WWalksNOn G ) X ) ) ) ) |
11 |
1
|
iswwlksnon |
|- ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } |
12 |
|
wwlknlsw |
|- ( w e. ( N WWalksN G ) -> ( w ` N ) = ( lastS ` w ) ) |
13 |
|
eqcom |
|- ( ( w ` 0 ) = X <-> X = ( w ` 0 ) ) |
14 |
13
|
biimpi |
|- ( ( w ` 0 ) = X -> X = ( w ` 0 ) ) |
15 |
12 14
|
eqeqan12d |
|- ( ( w e. ( N WWalksN G ) /\ ( w ` 0 ) = X ) -> ( ( w ` N ) = X <-> ( lastS ` w ) = ( w ` 0 ) ) ) |
16 |
15
|
pm5.32da |
|- ( w e. ( N WWalksN G ) -> ( ( ( w ` 0 ) = X /\ ( w ` N ) = X ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) = ( w ` 0 ) ) ) ) |
17 |
16
|
biancomd |
|- ( w e. ( N WWalksN G ) -> ( ( ( w ` 0 ) = X /\ ( w ` N ) = X ) <-> ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) ) ) |
18 |
17
|
rabbiia |
|- { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } = { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } |
19 |
11 18
|
eqtri |
|- ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } |
20 |
19
|
fveq2i |
|- ( # ` ( X ( N WWalksNOn G ) X ) ) = ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) |
21 |
20
|
a1i |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` ( X ( N WWalksNOn G ) X ) ) = ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) ) |
22 |
21
|
oveq2d |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( ( K ^ N ) - ( # ` ( X ( N WWalksNOn G ) X ) ) ) = ( ( K ^ N ) - ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) ) ) |
23 |
10 22
|
eqtrd |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) = ( ( K ^ N ) - ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) ) ) |
24 |
|
ovex |
|- ( N WWalksN G ) e. _V |
25 |
24
|
rabex |
|- { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } e. _V |
26 |
|
clwwlkvbij |
|- ( ( X e. V /\ N e. NN ) -> E. f f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) |
27 |
26
|
adantl |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> E. f f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) |
28 |
|
hasheqf1oi |
|- ( { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } e. _V -> ( E. f f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) -> ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) = ( # ` ( X ( ClWWalksNOn ` G ) N ) ) ) ) |
29 |
25 27 28
|
mpsyl |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) = ( # ` ( X ( ClWWalksNOn ` G ) N ) ) ) |
30 |
29
|
oveq2d |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( ( K ^ N ) - ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) ) = ( ( K ^ N ) - ( # ` ( X ( ClWWalksNOn ` G ) N ) ) ) ) |
31 |
5 23 30
|
3eqtrd |
|- ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` ( X Q N ) ) = ( ( K ^ N ) - ( # ` ( X ( ClWWalksNOn ` G ) N ) ) ) ) |