| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							numclwwlk.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							numclwwlk.q | 
							 |-  Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) | 
						
						
							| 3 | 
							
								1 2
							 | 
							numclwwlkovq | 
							 |-  ( ( X e. V /\ N e. NN ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							 |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) | 
						
						
							| 5 | 
							
								4
							 | 
							fveq2d | 
							 |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` ( X Q N ) ) = ( # ` { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) ) | 
						
						
							| 6 | 
							
								
							 | 
							nnnn0 | 
							 |-  ( N e. NN -> N e. NN0 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( X ( N WWalksNOn G ) X ) = ( X ( N WWalksNOn G ) X )  | 
						
						
							| 9 | 
							
								7 8 1
							 | 
							clwwlknclwwlkdifnum | 
							 |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) = ( ( K ^ N ) - ( # ` ( X ( N WWalksNOn G ) X ) ) ) ) | 
						
						
							| 10 | 
							
								6 9
							 | 
							sylanr2 | 
							 |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) = ( ( K ^ N ) - ( # ` ( X ( N WWalksNOn G ) X ) ) ) ) | 
						
						
							| 11 | 
							
								1
							 | 
							iswwlksnon | 
							 |-  ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } | 
						
						
							| 12 | 
							
								
							 | 
							wwlknlsw | 
							 |-  ( w e. ( N WWalksN G ) -> ( w ` N ) = ( lastS ` w ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqcom | 
							 |-  ( ( w ` 0 ) = X <-> X = ( w ` 0 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							biimpi | 
							 |-  ( ( w ` 0 ) = X -> X = ( w ` 0 ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							eqeqan12d | 
							 |-  ( ( w e. ( N WWalksN G ) /\ ( w ` 0 ) = X ) -> ( ( w ` N ) = X <-> ( lastS ` w ) = ( w ` 0 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							pm5.32da | 
							 |-  ( w e. ( N WWalksN G ) -> ( ( ( w ` 0 ) = X /\ ( w ` N ) = X ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) = ( w ` 0 ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							biancomd | 
							 |-  ( w e. ( N WWalksN G ) -> ( ( ( w ` 0 ) = X /\ ( w ` N ) = X ) <-> ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rabbiia | 
							 |-  { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } = { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } | 
						
						
							| 19 | 
							
								11 18
							 | 
							eqtri | 
							 |-  ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } | 
						
						
							| 20 | 
							
								19
							 | 
							fveq2i | 
							 |-  ( # ` ( X ( N WWalksNOn G ) X ) ) = ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) | 
						
						
							| 21 | 
							
								20
							 | 
							a1i | 
							 |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` ( X ( N WWalksNOn G ) X ) ) = ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) ) | 
						
						
							| 22 | 
							
								21
							 | 
							oveq2d | 
							 |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( ( K ^ N ) - ( # ` ( X ( N WWalksNOn G ) X ) ) ) = ( ( K ^ N ) - ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) ) ) | 
						
						
							| 23 | 
							
								10 22
							 | 
							eqtrd | 
							 |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) = ( ( K ^ N ) - ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) ) ) | 
						
						
							| 24 | 
							
								
							 | 
							ovex | 
							 |-  ( N WWalksN G ) e. _V  | 
						
						
							| 25 | 
							
								24
							 | 
							rabex | 
							 |-  { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } e. _V | 
						
						
							| 26 | 
							
								
							 | 
							clwwlkvbij | 
							 |-  ( ( X e. V /\ N e. NN ) -> E. f f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) | 
						
						
							| 27 | 
							
								26
							 | 
							adantl | 
							 |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> E. f f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) | 
						
						
							| 28 | 
							
								
							 | 
							hasheqf1oi | 
							 |-  ( { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } e. _V -> ( E. f f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) -> ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) = ( # ` ( X ( ClWWalksNOn ` G ) N ) ) ) ) | 
						
						
							| 29 | 
							
								25 27 28
							 | 
							mpsyl | 
							 |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) = ( # ` ( X ( ClWWalksNOn ` G ) N ) ) ) | 
						
						
							| 30 | 
							
								29
							 | 
							oveq2d | 
							 |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( ( K ^ N ) - ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) ) = ( ( K ^ N ) - ( # ` ( X ( ClWWalksNOn ` G ) N ) ) ) ) | 
						
						
							| 31 | 
							
								5 23 30
							 | 
							3eqtrd | 
							 |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` ( X Q N ) ) = ( ( K ^ N ) - ( # ` ( X ( ClWWalksNOn ` G ) N ) ) ) )  |