Step |
Hyp |
Ref |
Expression |
1 |
|
qnumdencoprm |
|- ( A e. QQ -> ( ( numer ` A ) gcd ( denom ` A ) ) = 1 ) |
2 |
1
|
oveq1d |
|- ( A e. QQ -> ( ( ( numer ` A ) gcd ( denom ` A ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
3 |
|
qnumcl |
|- ( A e. QQ -> ( numer ` A ) e. ZZ ) |
4 |
|
qdencl |
|- ( A e. QQ -> ( denom ` A ) e. NN ) |
5 |
4
|
nnzd |
|- ( A e. QQ -> ( denom ` A ) e. ZZ ) |
6 |
|
zgcdsq |
|- ( ( ( numer ` A ) e. ZZ /\ ( denom ` A ) e. ZZ ) -> ( ( ( numer ` A ) gcd ( denom ` A ) ) ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) ) |
7 |
3 5 6
|
syl2anc |
|- ( A e. QQ -> ( ( ( numer ` A ) gcd ( denom ` A ) ) ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) ) |
8 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
9 |
8
|
a1i |
|- ( A e. QQ -> ( 1 ^ 2 ) = 1 ) |
10 |
2 7 9
|
3eqtr3d |
|- ( A e. QQ -> ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) = 1 ) |
11 |
|
qeqnumdivden |
|- ( A e. QQ -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |
12 |
11
|
oveq1d |
|- ( A e. QQ -> ( A ^ 2 ) = ( ( ( numer ` A ) / ( denom ` A ) ) ^ 2 ) ) |
13 |
3
|
zcnd |
|- ( A e. QQ -> ( numer ` A ) e. CC ) |
14 |
4
|
nncnd |
|- ( A e. QQ -> ( denom ` A ) e. CC ) |
15 |
4
|
nnne0d |
|- ( A e. QQ -> ( denom ` A ) =/= 0 ) |
16 |
13 14 15
|
sqdivd |
|- ( A e. QQ -> ( ( ( numer ` A ) / ( denom ` A ) ) ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) / ( ( denom ` A ) ^ 2 ) ) ) |
17 |
12 16
|
eqtrd |
|- ( A e. QQ -> ( A ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) / ( ( denom ` A ) ^ 2 ) ) ) |
18 |
|
qsqcl |
|- ( A e. QQ -> ( A ^ 2 ) e. QQ ) |
19 |
|
zsqcl |
|- ( ( numer ` A ) e. ZZ -> ( ( numer ` A ) ^ 2 ) e. ZZ ) |
20 |
3 19
|
syl |
|- ( A e. QQ -> ( ( numer ` A ) ^ 2 ) e. ZZ ) |
21 |
4
|
nnsqcld |
|- ( A e. QQ -> ( ( denom ` A ) ^ 2 ) e. NN ) |
22 |
|
qnumdenbi |
|- ( ( ( A ^ 2 ) e. QQ /\ ( ( numer ` A ) ^ 2 ) e. ZZ /\ ( ( denom ` A ) ^ 2 ) e. NN ) -> ( ( ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) = 1 /\ ( A ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) / ( ( denom ` A ) ^ 2 ) ) ) <-> ( ( numer ` ( A ^ 2 ) ) = ( ( numer ` A ) ^ 2 ) /\ ( denom ` ( A ^ 2 ) ) = ( ( denom ` A ) ^ 2 ) ) ) ) |
23 |
18 20 21 22
|
syl3anc |
|- ( A e. QQ -> ( ( ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) = 1 /\ ( A ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) / ( ( denom ` A ) ^ 2 ) ) ) <-> ( ( numer ` ( A ^ 2 ) ) = ( ( numer ` A ) ^ 2 ) /\ ( denom ` ( A ^ 2 ) ) = ( ( denom ` A ) ^ 2 ) ) ) ) |
24 |
10 17 23
|
mpbi2and |
|- ( A e. QQ -> ( ( numer ` ( A ^ 2 ) ) = ( ( numer ` A ) ^ 2 ) /\ ( denom ` ( A ^ 2 ) ) = ( ( denom ` A ) ^ 2 ) ) ) |