| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qnumdencoprm |  |-  ( A e. QQ -> ( ( numer ` A ) gcd ( denom ` A ) ) = 1 ) | 
						
							| 2 | 1 | oveq1d |  |-  ( A e. QQ -> ( ( ( numer ` A ) gcd ( denom ` A ) ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 3 |  | qnumcl |  |-  ( A e. QQ -> ( numer ` A ) e. ZZ ) | 
						
							| 4 |  | qdencl |  |-  ( A e. QQ -> ( denom ` A ) e. NN ) | 
						
							| 5 | 4 | nnzd |  |-  ( A e. QQ -> ( denom ` A ) e. ZZ ) | 
						
							| 6 |  | zgcdsq |  |-  ( ( ( numer ` A ) e. ZZ /\ ( denom ` A ) e. ZZ ) -> ( ( ( numer ` A ) gcd ( denom ` A ) ) ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) ) | 
						
							| 7 | 3 5 6 | syl2anc |  |-  ( A e. QQ -> ( ( ( numer ` A ) gcd ( denom ` A ) ) ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) ) | 
						
							| 8 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 9 | 8 | a1i |  |-  ( A e. QQ -> ( 1 ^ 2 ) = 1 ) | 
						
							| 10 | 2 7 9 | 3eqtr3d |  |-  ( A e. QQ -> ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) = 1 ) | 
						
							| 11 |  | qeqnumdivden |  |-  ( A e. QQ -> A = ( ( numer ` A ) / ( denom ` A ) ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( A e. QQ -> ( A ^ 2 ) = ( ( ( numer ` A ) / ( denom ` A ) ) ^ 2 ) ) | 
						
							| 13 | 3 | zcnd |  |-  ( A e. QQ -> ( numer ` A ) e. CC ) | 
						
							| 14 | 4 | nncnd |  |-  ( A e. QQ -> ( denom ` A ) e. CC ) | 
						
							| 15 | 4 | nnne0d |  |-  ( A e. QQ -> ( denom ` A ) =/= 0 ) | 
						
							| 16 | 13 14 15 | sqdivd |  |-  ( A e. QQ -> ( ( ( numer ` A ) / ( denom ` A ) ) ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) / ( ( denom ` A ) ^ 2 ) ) ) | 
						
							| 17 | 12 16 | eqtrd |  |-  ( A e. QQ -> ( A ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) / ( ( denom ` A ) ^ 2 ) ) ) | 
						
							| 18 |  | qsqcl |  |-  ( A e. QQ -> ( A ^ 2 ) e. QQ ) | 
						
							| 19 |  | zsqcl |  |-  ( ( numer ` A ) e. ZZ -> ( ( numer ` A ) ^ 2 ) e. ZZ ) | 
						
							| 20 | 3 19 | syl |  |-  ( A e. QQ -> ( ( numer ` A ) ^ 2 ) e. ZZ ) | 
						
							| 21 | 4 | nnsqcld |  |-  ( A e. QQ -> ( ( denom ` A ) ^ 2 ) e. NN ) | 
						
							| 22 |  | qnumdenbi |  |-  ( ( ( A ^ 2 ) e. QQ /\ ( ( numer ` A ) ^ 2 ) e. ZZ /\ ( ( denom ` A ) ^ 2 ) e. NN ) -> ( ( ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) = 1 /\ ( A ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) / ( ( denom ` A ) ^ 2 ) ) ) <-> ( ( numer ` ( A ^ 2 ) ) = ( ( numer ` A ) ^ 2 ) /\ ( denom ` ( A ^ 2 ) ) = ( ( denom ` A ) ^ 2 ) ) ) ) | 
						
							| 23 | 18 20 21 22 | syl3anc |  |-  ( A e. QQ -> ( ( ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) = 1 /\ ( A ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) / ( ( denom ` A ) ^ 2 ) ) ) <-> ( ( numer ` ( A ^ 2 ) ) = ( ( numer ` A ) ^ 2 ) /\ ( denom ` ( A ^ 2 ) ) = ( ( denom ` A ) ^ 2 ) ) ) ) | 
						
							| 24 | 10 17 23 | mpbi2and |  |-  ( A e. QQ -> ( ( numer ` ( A ^ 2 ) ) = ( ( numer ` A ) ^ 2 ) /\ ( denom ` ( A ^ 2 ) ) = ( ( denom ` A ) ^ 2 ) ) ) |