| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numexp.1 |  |-  A e. NN0 | 
						
							| 2 |  | numexpp1.2 |  |-  M e. NN0 | 
						
							| 3 |  | numexp2x.3 |  |-  ( 2 x. M ) = N | 
						
							| 4 |  | numexp2x.4 |  |-  ( A ^ M ) = D | 
						
							| 5 |  | numexp2x.5 |  |-  ( D x. D ) = C | 
						
							| 6 | 2 | nn0cni |  |-  M e. CC | 
						
							| 7 | 6 | 2timesi |  |-  ( 2 x. M ) = ( M + M ) | 
						
							| 8 | 3 7 | eqtr3i |  |-  N = ( M + M ) | 
						
							| 9 | 8 | oveq2i |  |-  ( A ^ N ) = ( A ^ ( M + M ) ) | 
						
							| 10 | 1 | nn0cni |  |-  A e. CC | 
						
							| 11 |  | expadd |  |-  ( ( A e. CC /\ M e. NN0 /\ M e. NN0 ) -> ( A ^ ( M + M ) ) = ( ( A ^ M ) x. ( A ^ M ) ) ) | 
						
							| 12 | 10 2 2 11 | mp3an |  |-  ( A ^ ( M + M ) ) = ( ( A ^ M ) x. ( A ^ M ) ) | 
						
							| 13 | 9 12 | eqtri |  |-  ( A ^ N ) = ( ( A ^ M ) x. ( A ^ M ) ) | 
						
							| 14 | 4 4 | oveq12i |  |-  ( ( A ^ M ) x. ( A ^ M ) ) = ( D x. D ) | 
						
							| 15 | 14 5 | eqtri |  |-  ( ( A ^ M ) x. ( A ^ M ) ) = C | 
						
							| 16 | 13 15 | eqtri |  |-  ( A ^ N ) = C |