Step |
Hyp |
Ref |
Expression |
1 |
|
numexp.1 |
|- A e. NN0 |
2 |
|
numexpp1.2 |
|- M e. NN0 |
3 |
|
numexp2x.3 |
|- ( 2 x. M ) = N |
4 |
|
numexp2x.4 |
|- ( A ^ M ) = D |
5 |
|
numexp2x.5 |
|- ( D x. D ) = C |
6 |
2
|
nn0cni |
|- M e. CC |
7 |
6
|
2timesi |
|- ( 2 x. M ) = ( M + M ) |
8 |
3 7
|
eqtr3i |
|- N = ( M + M ) |
9 |
8
|
oveq2i |
|- ( A ^ N ) = ( A ^ ( M + M ) ) |
10 |
1
|
nn0cni |
|- A e. CC |
11 |
|
expadd |
|- ( ( A e. CC /\ M e. NN0 /\ M e. NN0 ) -> ( A ^ ( M + M ) ) = ( ( A ^ M ) x. ( A ^ M ) ) ) |
12 |
10 2 2 11
|
mp3an |
|- ( A ^ ( M + M ) ) = ( ( A ^ M ) x. ( A ^ M ) ) |
13 |
9 12
|
eqtri |
|- ( A ^ N ) = ( ( A ^ M ) x. ( A ^ M ) ) |
14 |
4 4
|
oveq12i |
|- ( ( A ^ M ) x. ( A ^ M ) ) = ( D x. D ) |
15 |
14 5
|
eqtri |
|- ( ( A ^ M ) x. ( A ^ M ) ) = C |
16 |
13 15
|
eqtri |
|- ( A ^ N ) = C |