Step |
Hyp |
Ref |
Expression |
1 |
|
numlt.1 |
|- T e. NN |
2 |
|
numlt.2 |
|- A e. NN0 |
3 |
|
numlt.3 |
|- B e. NN0 |
4 |
|
numltc.3 |
|- C e. NN0 |
5 |
|
numltc.4 |
|- D e. NN0 |
6 |
|
numltc.5 |
|- C < T |
7 |
|
numltc.6 |
|- A < B |
8 |
1 2 4 1 6
|
numlt |
|- ( ( T x. A ) + C ) < ( ( T x. A ) + T ) |
9 |
1
|
nnrei |
|- T e. RR |
10 |
9
|
recni |
|- T e. CC |
11 |
2
|
nn0rei |
|- A e. RR |
12 |
11
|
recni |
|- A e. CC |
13 |
|
ax-1cn |
|- 1 e. CC |
14 |
10 12 13
|
adddii |
|- ( T x. ( A + 1 ) ) = ( ( T x. A ) + ( T x. 1 ) ) |
15 |
10
|
mulid1i |
|- ( T x. 1 ) = T |
16 |
15
|
oveq2i |
|- ( ( T x. A ) + ( T x. 1 ) ) = ( ( T x. A ) + T ) |
17 |
14 16
|
eqtri |
|- ( T x. ( A + 1 ) ) = ( ( T x. A ) + T ) |
18 |
8 17
|
breqtrri |
|- ( ( T x. A ) + C ) < ( T x. ( A + 1 ) ) |
19 |
|
nn0ltp1le |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A < B <-> ( A + 1 ) <_ B ) ) |
20 |
2 3 19
|
mp2an |
|- ( A < B <-> ( A + 1 ) <_ B ) |
21 |
7 20
|
mpbi |
|- ( A + 1 ) <_ B |
22 |
1
|
nngt0i |
|- 0 < T |
23 |
|
peano2re |
|- ( A e. RR -> ( A + 1 ) e. RR ) |
24 |
11 23
|
ax-mp |
|- ( A + 1 ) e. RR |
25 |
3
|
nn0rei |
|- B e. RR |
26 |
24 25 9
|
lemul2i |
|- ( 0 < T -> ( ( A + 1 ) <_ B <-> ( T x. ( A + 1 ) ) <_ ( T x. B ) ) ) |
27 |
22 26
|
ax-mp |
|- ( ( A + 1 ) <_ B <-> ( T x. ( A + 1 ) ) <_ ( T x. B ) ) |
28 |
21 27
|
mpbi |
|- ( T x. ( A + 1 ) ) <_ ( T x. B ) |
29 |
9 11
|
remulcli |
|- ( T x. A ) e. RR |
30 |
4
|
nn0rei |
|- C e. RR |
31 |
29 30
|
readdcli |
|- ( ( T x. A ) + C ) e. RR |
32 |
9 24
|
remulcli |
|- ( T x. ( A + 1 ) ) e. RR |
33 |
9 25
|
remulcli |
|- ( T x. B ) e. RR |
34 |
31 32 33
|
ltletri |
|- ( ( ( ( T x. A ) + C ) < ( T x. ( A + 1 ) ) /\ ( T x. ( A + 1 ) ) <_ ( T x. B ) ) -> ( ( T x. A ) + C ) < ( T x. B ) ) |
35 |
18 28 34
|
mp2an |
|- ( ( T x. A ) + C ) < ( T x. B ) |
36 |
33 5
|
nn0addge1i |
|- ( T x. B ) <_ ( ( T x. B ) + D ) |
37 |
5
|
nn0rei |
|- D e. RR |
38 |
33 37
|
readdcli |
|- ( ( T x. B ) + D ) e. RR |
39 |
31 33 38
|
ltletri |
|- ( ( ( ( T x. A ) + C ) < ( T x. B ) /\ ( T x. B ) <_ ( ( T x. B ) + D ) ) -> ( ( T x. A ) + C ) < ( ( T x. B ) + D ) ) |
40 |
35 36 39
|
mp2an |
|- ( ( T x. A ) + C ) < ( ( T x. B ) + D ) |