| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numlt.1 |  |-  T e. NN | 
						
							| 2 |  | numlt.2 |  |-  A e. NN0 | 
						
							| 3 |  | numlt.3 |  |-  B e. NN0 | 
						
							| 4 |  | numltc.3 |  |-  C e. NN0 | 
						
							| 5 |  | numltc.4 |  |-  D e. NN0 | 
						
							| 6 |  | numltc.5 |  |-  C < T | 
						
							| 7 |  | numltc.6 |  |-  A < B | 
						
							| 8 | 1 2 4 1 6 | numlt |  |-  ( ( T x. A ) + C ) < ( ( T x. A ) + T ) | 
						
							| 9 | 1 | nnrei |  |-  T e. RR | 
						
							| 10 | 9 | recni |  |-  T e. CC | 
						
							| 11 | 2 | nn0rei |  |-  A e. RR | 
						
							| 12 | 11 | recni |  |-  A e. CC | 
						
							| 13 |  | ax-1cn |  |-  1 e. CC | 
						
							| 14 | 10 12 13 | adddii |  |-  ( T x. ( A + 1 ) ) = ( ( T x. A ) + ( T x. 1 ) ) | 
						
							| 15 | 10 | mulridi |  |-  ( T x. 1 ) = T | 
						
							| 16 | 15 | oveq2i |  |-  ( ( T x. A ) + ( T x. 1 ) ) = ( ( T x. A ) + T ) | 
						
							| 17 | 14 16 | eqtri |  |-  ( T x. ( A + 1 ) ) = ( ( T x. A ) + T ) | 
						
							| 18 | 8 17 | breqtrri |  |-  ( ( T x. A ) + C ) < ( T x. ( A + 1 ) ) | 
						
							| 19 |  | nn0ltp1le |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A < B <-> ( A + 1 ) <_ B ) ) | 
						
							| 20 | 2 3 19 | mp2an |  |-  ( A < B <-> ( A + 1 ) <_ B ) | 
						
							| 21 | 7 20 | mpbi |  |-  ( A + 1 ) <_ B | 
						
							| 22 | 1 | nngt0i |  |-  0 < T | 
						
							| 23 |  | peano2re |  |-  ( A e. RR -> ( A + 1 ) e. RR ) | 
						
							| 24 | 11 23 | ax-mp |  |-  ( A + 1 ) e. RR | 
						
							| 25 | 3 | nn0rei |  |-  B e. RR | 
						
							| 26 | 24 25 9 | lemul2i |  |-  ( 0 < T -> ( ( A + 1 ) <_ B <-> ( T x. ( A + 1 ) ) <_ ( T x. B ) ) ) | 
						
							| 27 | 22 26 | ax-mp |  |-  ( ( A + 1 ) <_ B <-> ( T x. ( A + 1 ) ) <_ ( T x. B ) ) | 
						
							| 28 | 21 27 | mpbi |  |-  ( T x. ( A + 1 ) ) <_ ( T x. B ) | 
						
							| 29 | 9 11 | remulcli |  |-  ( T x. A ) e. RR | 
						
							| 30 | 4 | nn0rei |  |-  C e. RR | 
						
							| 31 | 29 30 | readdcli |  |-  ( ( T x. A ) + C ) e. RR | 
						
							| 32 | 9 24 | remulcli |  |-  ( T x. ( A + 1 ) ) e. RR | 
						
							| 33 | 9 25 | remulcli |  |-  ( T x. B ) e. RR | 
						
							| 34 | 31 32 33 | ltletri |  |-  ( ( ( ( T x. A ) + C ) < ( T x. ( A + 1 ) ) /\ ( T x. ( A + 1 ) ) <_ ( T x. B ) ) -> ( ( T x. A ) + C ) < ( T x. B ) ) | 
						
							| 35 | 18 28 34 | mp2an |  |-  ( ( T x. A ) + C ) < ( T x. B ) | 
						
							| 36 | 33 5 | nn0addge1i |  |-  ( T x. B ) <_ ( ( T x. B ) + D ) | 
						
							| 37 | 5 | nn0rei |  |-  D e. RR | 
						
							| 38 | 33 37 | readdcli |  |-  ( ( T x. B ) + D ) e. RR | 
						
							| 39 | 31 33 38 | ltletri |  |-  ( ( ( ( T x. A ) + C ) < ( T x. B ) /\ ( T x. B ) <_ ( ( T x. B ) + D ) ) -> ( ( T x. A ) + C ) < ( ( T x. B ) + D ) ) | 
						
							| 40 | 35 36 39 | mp2an |  |-  ( ( T x. A ) + C ) < ( ( T x. B ) + D ) |