Metamath Proof Explorer


Theorem numlti

Description: Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses numlti.1
|- T e. NN
numlti.2
|- A e. NN
numlti.3
|- B e. NN0
numlti.4
|- C e. NN0
numlti.5
|- C < T
Assertion numlti
|- C < ( ( T x. A ) + B )

Proof

Step Hyp Ref Expression
1 numlti.1
 |-  T e. NN
2 numlti.2
 |-  A e. NN
3 numlti.3
 |-  B e. NN0
4 numlti.4
 |-  C e. NN0
5 numlti.5
 |-  C < T
6 1 nnnn0i
 |-  T e. NN0
7 6 4 num0h
 |-  C = ( ( T x. 0 ) + C )
8 0nn0
 |-  0 e. NN0
9 2 nnnn0i
 |-  A e. NN0
10 2 nngt0i
 |-  0 < A
11 1 8 9 4 3 5 10 numltc
 |-  ( ( T x. 0 ) + C ) < ( ( T x. A ) + B )
12 7 11 eqbrtri
 |-  C < ( ( T x. A ) + B )