| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numma.1 |
|- T e. NN0 |
| 2 |
|
numma.2 |
|- A e. NN0 |
| 3 |
|
numma.3 |
|- B e. NN0 |
| 4 |
|
numma.4 |
|- C e. NN0 |
| 5 |
|
numma.5 |
|- D e. NN0 |
| 6 |
|
numma.6 |
|- M = ( ( T x. A ) + B ) |
| 7 |
|
numma.7 |
|- N = ( ( T x. C ) + D ) |
| 8 |
|
numma.8 |
|- P e. NN0 |
| 9 |
|
numma.9 |
|- ( ( A x. P ) + C ) = E |
| 10 |
|
numma.10 |
|- ( ( B x. P ) + D ) = F |
| 11 |
6
|
oveq1i |
|- ( M x. P ) = ( ( ( T x. A ) + B ) x. P ) |
| 12 |
11 7
|
oveq12i |
|- ( ( M x. P ) + N ) = ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) |
| 13 |
1
|
nn0cni |
|- T e. CC |
| 14 |
2
|
nn0cni |
|- A e. CC |
| 15 |
8
|
nn0cni |
|- P e. CC |
| 16 |
14 15
|
mulcli |
|- ( A x. P ) e. CC |
| 17 |
4
|
nn0cni |
|- C e. CC |
| 18 |
13 16 17
|
adddii |
|- ( T x. ( ( A x. P ) + C ) ) = ( ( T x. ( A x. P ) ) + ( T x. C ) ) |
| 19 |
13 14 15
|
mulassi |
|- ( ( T x. A ) x. P ) = ( T x. ( A x. P ) ) |
| 20 |
19
|
oveq1i |
|- ( ( ( T x. A ) x. P ) + ( T x. C ) ) = ( ( T x. ( A x. P ) ) + ( T x. C ) ) |
| 21 |
18 20
|
eqtr4i |
|- ( T x. ( ( A x. P ) + C ) ) = ( ( ( T x. A ) x. P ) + ( T x. C ) ) |
| 22 |
21
|
oveq1i |
|- ( ( T x. ( ( A x. P ) + C ) ) + ( ( B x. P ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( T x. C ) ) + ( ( B x. P ) + D ) ) |
| 23 |
13 14
|
mulcli |
|- ( T x. A ) e. CC |
| 24 |
3
|
nn0cni |
|- B e. CC |
| 25 |
23 24 15
|
adddiri |
|- ( ( ( T x. A ) + B ) x. P ) = ( ( ( T x. A ) x. P ) + ( B x. P ) ) |
| 26 |
25
|
oveq1i |
|- ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( B x. P ) ) + ( ( T x. C ) + D ) ) |
| 27 |
23 15
|
mulcli |
|- ( ( T x. A ) x. P ) e. CC |
| 28 |
13 17
|
mulcli |
|- ( T x. C ) e. CC |
| 29 |
24 15
|
mulcli |
|- ( B x. P ) e. CC |
| 30 |
5
|
nn0cni |
|- D e. CC |
| 31 |
27 28 29 30
|
add4i |
|- ( ( ( ( T x. A ) x. P ) + ( T x. C ) ) + ( ( B x. P ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( B x. P ) ) + ( ( T x. C ) + D ) ) |
| 32 |
26 31
|
eqtr4i |
|- ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( T x. C ) ) + ( ( B x. P ) + D ) ) |
| 33 |
22 32
|
eqtr4i |
|- ( ( T x. ( ( A x. P ) + C ) ) + ( ( B x. P ) + D ) ) = ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) |
| 34 |
9
|
oveq2i |
|- ( T x. ( ( A x. P ) + C ) ) = ( T x. E ) |
| 35 |
34 10
|
oveq12i |
|- ( ( T x. ( ( A x. P ) + C ) ) + ( ( B x. P ) + D ) ) = ( ( T x. E ) + F ) |
| 36 |
12 33 35
|
3eqtr2i |
|- ( ( M x. P ) + N ) = ( ( T x. E ) + F ) |