Step |
Hyp |
Ref |
Expression |
1 |
|
numma.1 |
|- T e. NN0 |
2 |
|
numma.2 |
|- A e. NN0 |
3 |
|
numma.3 |
|- B e. NN0 |
4 |
|
numma.4 |
|- C e. NN0 |
5 |
|
numma.5 |
|- D e. NN0 |
6 |
|
numma.6 |
|- M = ( ( T x. A ) + B ) |
7 |
|
numma.7 |
|- N = ( ( T x. C ) + D ) |
8 |
|
numma.8 |
|- P e. NN0 |
9 |
|
numma.9 |
|- ( ( A x. P ) + C ) = E |
10 |
|
numma.10 |
|- ( ( B x. P ) + D ) = F |
11 |
6
|
oveq1i |
|- ( M x. P ) = ( ( ( T x. A ) + B ) x. P ) |
12 |
11 7
|
oveq12i |
|- ( ( M x. P ) + N ) = ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) |
13 |
1
|
nn0cni |
|- T e. CC |
14 |
2
|
nn0cni |
|- A e. CC |
15 |
8
|
nn0cni |
|- P e. CC |
16 |
14 15
|
mulcli |
|- ( A x. P ) e. CC |
17 |
4
|
nn0cni |
|- C e. CC |
18 |
13 16 17
|
adddii |
|- ( T x. ( ( A x. P ) + C ) ) = ( ( T x. ( A x. P ) ) + ( T x. C ) ) |
19 |
13 14 15
|
mulassi |
|- ( ( T x. A ) x. P ) = ( T x. ( A x. P ) ) |
20 |
19
|
oveq1i |
|- ( ( ( T x. A ) x. P ) + ( T x. C ) ) = ( ( T x. ( A x. P ) ) + ( T x. C ) ) |
21 |
18 20
|
eqtr4i |
|- ( T x. ( ( A x. P ) + C ) ) = ( ( ( T x. A ) x. P ) + ( T x. C ) ) |
22 |
21
|
oveq1i |
|- ( ( T x. ( ( A x. P ) + C ) ) + ( ( B x. P ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( T x. C ) ) + ( ( B x. P ) + D ) ) |
23 |
13 14
|
mulcli |
|- ( T x. A ) e. CC |
24 |
3
|
nn0cni |
|- B e. CC |
25 |
23 24 15
|
adddiri |
|- ( ( ( T x. A ) + B ) x. P ) = ( ( ( T x. A ) x. P ) + ( B x. P ) ) |
26 |
25
|
oveq1i |
|- ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( B x. P ) ) + ( ( T x. C ) + D ) ) |
27 |
23 15
|
mulcli |
|- ( ( T x. A ) x. P ) e. CC |
28 |
13 17
|
mulcli |
|- ( T x. C ) e. CC |
29 |
24 15
|
mulcli |
|- ( B x. P ) e. CC |
30 |
5
|
nn0cni |
|- D e. CC |
31 |
27 28 29 30
|
add4i |
|- ( ( ( ( T x. A ) x. P ) + ( T x. C ) ) + ( ( B x. P ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( B x. P ) ) + ( ( T x. C ) + D ) ) |
32 |
26 31
|
eqtr4i |
|- ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) = ( ( ( ( T x. A ) x. P ) + ( T x. C ) ) + ( ( B x. P ) + D ) ) |
33 |
22 32
|
eqtr4i |
|- ( ( T x. ( ( A x. P ) + C ) ) + ( ( B x. P ) + D ) ) = ( ( ( ( T x. A ) + B ) x. P ) + ( ( T x. C ) + D ) ) |
34 |
9
|
oveq2i |
|- ( T x. ( ( A x. P ) + C ) ) = ( T x. E ) |
35 |
34 10
|
oveq12i |
|- ( ( T x. ( ( A x. P ) + C ) ) + ( ( B x. P ) + D ) ) = ( ( T x. E ) + F ) |
36 |
12 33 35
|
3eqtr2i |
|- ( ( M x. P ) + N ) = ( ( T x. E ) + F ) |