| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numma.1 |
|- T e. NN0 |
| 2 |
|
numma.2 |
|- A e. NN0 |
| 3 |
|
numma.3 |
|- B e. NN0 |
| 4 |
|
numma.4 |
|- C e. NN0 |
| 5 |
|
numma.5 |
|- D e. NN0 |
| 6 |
|
numma.6 |
|- M = ( ( T x. A ) + B ) |
| 7 |
|
numma.7 |
|- N = ( ( T x. C ) + D ) |
| 8 |
|
nummac.8 |
|- P e. NN0 |
| 9 |
|
nummac.9 |
|- F e. NN0 |
| 10 |
|
nummac.10 |
|- G e. NN0 |
| 11 |
|
nummac.11 |
|- ( ( A x. P ) + ( C + G ) ) = E |
| 12 |
|
nummac.12 |
|- ( ( B x. P ) + D ) = ( ( T x. G ) + F ) |
| 13 |
1
|
nn0cni |
|- T e. CC |
| 14 |
2
|
nn0cni |
|- A e. CC |
| 15 |
8
|
nn0cni |
|- P e. CC |
| 16 |
14 15
|
mulcli |
|- ( A x. P ) e. CC |
| 17 |
4
|
nn0cni |
|- C e. CC |
| 18 |
10
|
nn0cni |
|- G e. CC |
| 19 |
16 17 18
|
addassi |
|- ( ( ( A x. P ) + C ) + G ) = ( ( A x. P ) + ( C + G ) ) |
| 20 |
19 11
|
eqtri |
|- ( ( ( A x. P ) + C ) + G ) = E |
| 21 |
16 17
|
addcli |
|- ( ( A x. P ) + C ) e. CC |
| 22 |
21 18
|
addcli |
|- ( ( ( A x. P ) + C ) + G ) e. CC |
| 23 |
20 22
|
eqeltrri |
|- E e. CC |
| 24 |
13 23 18
|
subdii |
|- ( T x. ( E - G ) ) = ( ( T x. E ) - ( T x. G ) ) |
| 25 |
24
|
oveq1i |
|- ( ( T x. ( E - G ) ) + ( ( T x. G ) + F ) ) = ( ( ( T x. E ) - ( T x. G ) ) + ( ( T x. G ) + F ) ) |
| 26 |
23 18 21
|
subadd2i |
|- ( ( E - G ) = ( ( A x. P ) + C ) <-> ( ( ( A x. P ) + C ) + G ) = E ) |
| 27 |
20 26
|
mpbir |
|- ( E - G ) = ( ( A x. P ) + C ) |
| 28 |
27
|
eqcomi |
|- ( ( A x. P ) + C ) = ( E - G ) |
| 29 |
1 2 3 4 5 6 7 8 28 12
|
numma |
|- ( ( M x. P ) + N ) = ( ( T x. ( E - G ) ) + ( ( T x. G ) + F ) ) |
| 30 |
13 23
|
mulcli |
|- ( T x. E ) e. CC |
| 31 |
13 18
|
mulcli |
|- ( T x. G ) e. CC |
| 32 |
|
npcan |
|- ( ( ( T x. E ) e. CC /\ ( T x. G ) e. CC ) -> ( ( ( T x. E ) - ( T x. G ) ) + ( T x. G ) ) = ( T x. E ) ) |
| 33 |
30 31 32
|
mp2an |
|- ( ( ( T x. E ) - ( T x. G ) ) + ( T x. G ) ) = ( T x. E ) |
| 34 |
33
|
oveq1i |
|- ( ( ( ( T x. E ) - ( T x. G ) ) + ( T x. G ) ) + F ) = ( ( T x. E ) + F ) |
| 35 |
30 31
|
subcli |
|- ( ( T x. E ) - ( T x. G ) ) e. CC |
| 36 |
9
|
nn0cni |
|- F e. CC |
| 37 |
35 31 36
|
addassi |
|- ( ( ( ( T x. E ) - ( T x. G ) ) + ( T x. G ) ) + F ) = ( ( ( T x. E ) - ( T x. G ) ) + ( ( T x. G ) + F ) ) |
| 38 |
34 37
|
eqtr3i |
|- ( ( T x. E ) + F ) = ( ( ( T x. E ) - ( T x. G ) ) + ( ( T x. G ) + F ) ) |
| 39 |
25 29 38
|
3eqtr4i |
|- ( ( M x. P ) + N ) = ( ( T x. E ) + F ) |