Step |
Hyp |
Ref |
Expression |
1 |
|
numma.1 |
|- T e. NN0 |
2 |
|
numma.2 |
|- A e. NN0 |
3 |
|
numma.3 |
|- B e. NN0 |
4 |
|
numma.4 |
|- C e. NN0 |
5 |
|
numma.5 |
|- D e. NN0 |
6 |
|
numma.6 |
|- M = ( ( T x. A ) + B ) |
7 |
|
numma.7 |
|- N = ( ( T x. C ) + D ) |
8 |
|
nummac.8 |
|- P e. NN0 |
9 |
|
nummac.9 |
|- F e. NN0 |
10 |
|
nummac.10 |
|- G e. NN0 |
11 |
|
nummac.11 |
|- ( ( A x. P ) + ( C + G ) ) = E |
12 |
|
nummac.12 |
|- ( ( B x. P ) + D ) = ( ( T x. G ) + F ) |
13 |
1
|
nn0cni |
|- T e. CC |
14 |
2
|
nn0cni |
|- A e. CC |
15 |
8
|
nn0cni |
|- P e. CC |
16 |
14 15
|
mulcli |
|- ( A x. P ) e. CC |
17 |
4
|
nn0cni |
|- C e. CC |
18 |
10
|
nn0cni |
|- G e. CC |
19 |
16 17 18
|
addassi |
|- ( ( ( A x. P ) + C ) + G ) = ( ( A x. P ) + ( C + G ) ) |
20 |
19 11
|
eqtri |
|- ( ( ( A x. P ) + C ) + G ) = E |
21 |
16 17
|
addcli |
|- ( ( A x. P ) + C ) e. CC |
22 |
21 18
|
addcli |
|- ( ( ( A x. P ) + C ) + G ) e. CC |
23 |
20 22
|
eqeltrri |
|- E e. CC |
24 |
13 23 18
|
subdii |
|- ( T x. ( E - G ) ) = ( ( T x. E ) - ( T x. G ) ) |
25 |
24
|
oveq1i |
|- ( ( T x. ( E - G ) ) + ( ( T x. G ) + F ) ) = ( ( ( T x. E ) - ( T x. G ) ) + ( ( T x. G ) + F ) ) |
26 |
23 18 21
|
subadd2i |
|- ( ( E - G ) = ( ( A x. P ) + C ) <-> ( ( ( A x. P ) + C ) + G ) = E ) |
27 |
20 26
|
mpbir |
|- ( E - G ) = ( ( A x. P ) + C ) |
28 |
27
|
eqcomi |
|- ( ( A x. P ) + C ) = ( E - G ) |
29 |
1 2 3 4 5 6 7 8 28 12
|
numma |
|- ( ( M x. P ) + N ) = ( ( T x. ( E - G ) ) + ( ( T x. G ) + F ) ) |
30 |
13 23
|
mulcli |
|- ( T x. E ) e. CC |
31 |
13 18
|
mulcli |
|- ( T x. G ) e. CC |
32 |
|
npcan |
|- ( ( ( T x. E ) e. CC /\ ( T x. G ) e. CC ) -> ( ( ( T x. E ) - ( T x. G ) ) + ( T x. G ) ) = ( T x. E ) ) |
33 |
30 31 32
|
mp2an |
|- ( ( ( T x. E ) - ( T x. G ) ) + ( T x. G ) ) = ( T x. E ) |
34 |
33
|
oveq1i |
|- ( ( ( ( T x. E ) - ( T x. G ) ) + ( T x. G ) ) + F ) = ( ( T x. E ) + F ) |
35 |
30 31
|
subcli |
|- ( ( T x. E ) - ( T x. G ) ) e. CC |
36 |
9
|
nn0cni |
|- F e. CC |
37 |
35 31 36
|
addassi |
|- ( ( ( ( T x. E ) - ( T x. G ) ) + ( T x. G ) ) + F ) = ( ( ( T x. E ) - ( T x. G ) ) + ( ( T x. G ) + F ) ) |
38 |
34 37
|
eqtr3i |
|- ( ( T x. E ) + F ) = ( ( ( T x. E ) - ( T x. G ) ) + ( ( T x. G ) + F ) ) |
39 |
25 29 38
|
3eqtr4i |
|- ( ( M x. P ) + N ) = ( ( T x. E ) + F ) |