| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nummul1c.1 |  |-  T e. NN0 | 
						
							| 2 |  | nummul1c.2 |  |-  P e. NN0 | 
						
							| 3 |  | nummul1c.3 |  |-  A e. NN0 | 
						
							| 4 |  | nummul1c.4 |  |-  B e. NN0 | 
						
							| 5 |  | nummul1c.5 |  |-  N = ( ( T x. A ) + B ) | 
						
							| 6 |  | nummul1c.6 |  |-  D e. NN0 | 
						
							| 7 |  | nummul1c.7 |  |-  E e. NN0 | 
						
							| 8 |  | nummul2c.7 |  |-  ( ( P x. A ) + E ) = C | 
						
							| 9 |  | nummul2c.8 |  |-  ( P x. B ) = ( ( T x. E ) + D ) | 
						
							| 10 | 1 3 4 | numcl |  |-  ( ( T x. A ) + B ) e. NN0 | 
						
							| 11 | 5 10 | eqeltri |  |-  N e. NN0 | 
						
							| 12 | 11 | nn0cni |  |-  N e. CC | 
						
							| 13 | 2 | nn0cni |  |-  P e. CC | 
						
							| 14 | 3 | nn0cni |  |-  A e. CC | 
						
							| 15 | 14 13 | mulcomi |  |-  ( A x. P ) = ( P x. A ) | 
						
							| 16 | 15 | oveq1i |  |-  ( ( A x. P ) + E ) = ( ( P x. A ) + E ) | 
						
							| 17 | 16 8 | eqtri |  |-  ( ( A x. P ) + E ) = C | 
						
							| 18 | 4 | nn0cni |  |-  B e. CC | 
						
							| 19 | 13 18 9 | mulcomli |  |-  ( B x. P ) = ( ( T x. E ) + D ) | 
						
							| 20 | 1 2 3 4 5 6 7 17 19 | nummul1c |  |-  ( N x. P ) = ( ( T x. C ) + D ) | 
						
							| 21 | 12 13 20 | mulcomli |  |-  ( P x. N ) = ( ( T x. C ) + D ) |