Step |
Hyp |
Ref |
Expression |
1 |
|
nummul1c.1 |
|- T e. NN0 |
2 |
|
nummul1c.2 |
|- P e. NN0 |
3 |
|
nummul1c.3 |
|- A e. NN0 |
4 |
|
nummul1c.4 |
|- B e. NN0 |
5 |
|
nummul1c.5 |
|- N = ( ( T x. A ) + B ) |
6 |
|
nummul1c.6 |
|- D e. NN0 |
7 |
|
nummul1c.7 |
|- E e. NN0 |
8 |
|
nummul2c.7 |
|- ( ( P x. A ) + E ) = C |
9 |
|
nummul2c.8 |
|- ( P x. B ) = ( ( T x. E ) + D ) |
10 |
1 3 4
|
numcl |
|- ( ( T x. A ) + B ) e. NN0 |
11 |
5 10
|
eqeltri |
|- N e. NN0 |
12 |
11
|
nn0cni |
|- N e. CC |
13 |
2
|
nn0cni |
|- P e. CC |
14 |
3
|
nn0cni |
|- A e. CC |
15 |
14 13
|
mulcomi |
|- ( A x. P ) = ( P x. A ) |
16 |
15
|
oveq1i |
|- ( ( A x. P ) + E ) = ( ( P x. A ) + E ) |
17 |
16 8
|
eqtri |
|- ( ( A x. P ) + E ) = C |
18 |
4
|
nn0cni |
|- B e. CC |
19 |
13 18 9
|
mulcomli |
|- ( B x. P ) = ( ( T x. E ) + D ) |
20 |
1 2 3 4 5 6 7 17 19
|
nummul1c |
|- ( N x. P ) = ( ( T x. C ) + D ) |
21 |
12 13 20
|
mulcomli |
|- ( P x. N ) = ( ( T x. C ) + D ) |