| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numsucc.1 |  |-  Y e. NN0 | 
						
							| 2 |  | numsucc.2 |  |-  T = ( Y + 1 ) | 
						
							| 3 |  | numsucc.3 |  |-  A e. NN0 | 
						
							| 4 |  | numsucc.4 |  |-  ( A + 1 ) = B | 
						
							| 5 |  | numsucc.5 |  |-  N = ( ( T x. A ) + Y ) | 
						
							| 6 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 7 | 1 6 | nn0addcli |  |-  ( Y + 1 ) e. NN0 | 
						
							| 8 | 2 7 | eqeltri |  |-  T e. NN0 | 
						
							| 9 | 8 | nn0cni |  |-  T e. CC | 
						
							| 10 | 9 | mulridi |  |-  ( T x. 1 ) = T | 
						
							| 11 | 10 | oveq2i |  |-  ( ( T x. A ) + ( T x. 1 ) ) = ( ( T x. A ) + T ) | 
						
							| 12 | 3 | nn0cni |  |-  A e. CC | 
						
							| 13 |  | ax-1cn |  |-  1 e. CC | 
						
							| 14 | 9 12 13 | adddii |  |-  ( T x. ( A + 1 ) ) = ( ( T x. A ) + ( T x. 1 ) ) | 
						
							| 15 | 2 | eqcomi |  |-  ( Y + 1 ) = T | 
						
							| 16 | 8 3 1 15 5 | numsuc |  |-  ( N + 1 ) = ( ( T x. A ) + T ) | 
						
							| 17 | 11 14 16 | 3eqtr4ri |  |-  ( N + 1 ) = ( T x. ( A + 1 ) ) | 
						
							| 18 | 4 | oveq2i |  |-  ( T x. ( A + 1 ) ) = ( T x. B ) | 
						
							| 19 | 3 6 | nn0addcli |  |-  ( A + 1 ) e. NN0 | 
						
							| 20 | 4 19 | eqeltrri |  |-  B e. NN0 | 
						
							| 21 | 8 20 | num0u |  |-  ( T x. B ) = ( ( T x. B ) + 0 ) | 
						
							| 22 | 17 18 21 | 3eqtri |  |-  ( N + 1 ) = ( ( T x. B ) + 0 ) |