Metamath Proof Explorer


Theorem numth

Description: Numeration theorem: every set can be put into one-to-one correspondence with some ordinal (using AC). Theorem 10.3 of TakeutiZaring p. 84. (Contributed by NM, 10-Feb-1997) (Proof shortened by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypothesis numth.1
|- A e. _V
Assertion numth
|- E. x e. On E. f f : x -1-1-onto-> A

Proof

Step Hyp Ref Expression
1 numth.1
 |-  A e. _V
2 1 numth2
 |-  E. x e. On x ~~ A
3 bren
 |-  ( x ~~ A <-> E. f f : x -1-1-onto-> A )
4 3 rexbii
 |-  ( E. x e. On x ~~ A <-> E. x e. On E. f f : x -1-1-onto-> A )
5 2 4 mpbi
 |-  E. x e. On E. f f : x -1-1-onto-> A