Description: Numeration theorem: every set can be put into one-to-one correspondence with some ordinal (using AC). Theorem 10.3 of TakeutiZaring p. 84. (Contributed by NM, 10-Feb-1997) (Proof shortened by Mario Carneiro, 8-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | numth.1 | |- A e. _V |
|
Assertion | numth | |- E. x e. On E. f f : x -1-1-onto-> A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numth.1 | |- A e. _V |
|
2 | 1 | numth2 | |- E. x e. On x ~~ A |
3 | bren | |- ( x ~~ A <-> E. f f : x -1-1-onto-> A ) |
|
4 | 3 | rexbii | |- ( E. x e. On x ~~ A <-> E. x e. On E. f f : x -1-1-onto-> A ) |
5 | 2 4 | mpbi | |- E. x e. On E. f f : x -1-1-onto-> A |