Metamath Proof Explorer


Theorem numth2

Description: Numeration theorem: any set is equinumerous to some ordinal (using AC). Theorem 10.3 of TakeutiZaring p. 84. (Contributed by NM, 20-Oct-2003)

Ref Expression
Hypothesis numth.1
|- A e. _V
Assertion numth2
|- E. x e. On x ~~ A

Proof

Step Hyp Ref Expression
1 numth.1
 |-  A e. _V
2 numth3
 |-  ( A e. _V -> A e. dom card )
3 1 2 ax-mp
 |-  A e. dom card
4 isnum2
 |-  ( A e. dom card <-> E. x e. On x ~~ A )
5 3 4 mpbi
 |-  E. x e. On x ~~ A