Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( y = A -> ( y ~< x <-> A ~< x ) ) |
2 |
1
|
rexbidv |
|- ( y = A -> ( E. x e. On y ~< x <-> E. x e. On A ~< x ) ) |
3 |
|
vpwex |
|- ~P y e. _V |
4 |
3
|
numth2 |
|- E. x e. On x ~~ ~P y |
5 |
|
vex |
|- y e. _V |
6 |
5
|
canth2 |
|- y ~< ~P y |
7 |
|
ensym |
|- ( x ~~ ~P y -> ~P y ~~ x ) |
8 |
|
sdomentr |
|- ( ( y ~< ~P y /\ ~P y ~~ x ) -> y ~< x ) |
9 |
6 7 8
|
sylancr |
|- ( x ~~ ~P y -> y ~< x ) |
10 |
9
|
reximi |
|- ( E. x e. On x ~~ ~P y -> E. x e. On y ~< x ) |
11 |
4 10
|
ax-mp |
|- E. x e. On y ~< x |
12 |
2 11
|
vtoclg |
|- ( A e. V -> E. x e. On A ~< x ) |