| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 |  |-  ( y = A -> ( y ~< x <-> A ~< x ) ) | 
						
							| 2 | 1 | rexbidv |  |-  ( y = A -> ( E. x e. On y ~< x <-> E. x e. On A ~< x ) ) | 
						
							| 3 |  | vpwex |  |-  ~P y e. _V | 
						
							| 4 | 3 | numth2 |  |-  E. x e. On x ~~ ~P y | 
						
							| 5 |  | vex |  |-  y e. _V | 
						
							| 6 | 5 | canth2 |  |-  y ~< ~P y | 
						
							| 7 |  | ensym |  |-  ( x ~~ ~P y -> ~P y ~~ x ) | 
						
							| 8 |  | sdomentr |  |-  ( ( y ~< ~P y /\ ~P y ~~ x ) -> y ~< x ) | 
						
							| 9 | 6 7 8 | sylancr |  |-  ( x ~~ ~P y -> y ~< x ) | 
						
							| 10 | 9 | reximi |  |-  ( E. x e. On x ~~ ~P y -> E. x e. On y ~< x ) | 
						
							| 11 | 4 10 | ax-mp |  |-  E. x e. On y ~< x | 
						
							| 12 | 2 11 | vtoclg |  |-  ( A e. V -> E. x e. On A ~< x ) |