| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nv0.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nv0.4 |  |-  S = ( .sOLD ` U ) | 
						
							| 3 |  | nv0.6 |  |-  Z = ( 0vec ` U ) | 
						
							| 4 |  | eqid |  |-  ( 1st ` U ) = ( 1st ` U ) | 
						
							| 5 | 4 | nvvc |  |-  ( U e. NrmCVec -> ( 1st ` U ) e. CVecOLD ) | 
						
							| 6 |  | eqid |  |-  ( +v ` U ) = ( +v ` U ) | 
						
							| 7 | 6 | vafval |  |-  ( +v ` U ) = ( 1st ` ( 1st ` U ) ) | 
						
							| 8 | 2 | smfval |  |-  S = ( 2nd ` ( 1st ` U ) ) | 
						
							| 9 | 1 6 | bafval |  |-  X = ran ( +v ` U ) | 
						
							| 10 |  | eqid |  |-  ( GId ` ( +v ` U ) ) = ( GId ` ( +v ` U ) ) | 
						
							| 11 | 7 8 9 10 | vc0 |  |-  ( ( ( 1st ` U ) e. CVecOLD /\ A e. X ) -> ( 0 S A ) = ( GId ` ( +v ` U ) ) ) | 
						
							| 12 | 5 11 | sylan |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( 0 S A ) = ( GId ` ( +v ` U ) ) ) | 
						
							| 13 | 6 3 | 0vfval |  |-  ( U e. NrmCVec -> Z = ( GId ` ( +v ` U ) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( U e. NrmCVec /\ A e. X ) -> Z = ( GId ` ( +v ` U ) ) ) | 
						
							| 15 | 12 14 | eqtr4d |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( 0 S A ) = Z ) |