| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nv0id.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nv0id.2 |  |-  G = ( +v ` U ) | 
						
							| 3 |  | nv0id.6 |  |-  Z = ( 0vec ` U ) | 
						
							| 4 | 2 3 | 0vfval |  |-  ( U e. NrmCVec -> Z = ( GId ` G ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( U e. NrmCVec -> ( Z G A ) = ( ( GId ` G ) G A ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( Z G A ) = ( ( GId ` G ) G A ) ) | 
						
							| 7 | 2 | nvgrp |  |-  ( U e. NrmCVec -> G e. GrpOp ) | 
						
							| 8 | 1 2 | bafval |  |-  X = ran G | 
						
							| 9 |  | eqid |  |-  ( GId ` G ) = ( GId ` G ) | 
						
							| 10 | 8 9 | grpolid |  |-  ( ( G e. GrpOp /\ A e. X ) -> ( ( GId ` G ) G A ) = A ) | 
						
							| 11 | 7 10 | sylan |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( GId ` G ) G A ) = A ) | 
						
							| 12 | 6 11 | eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( Z G A ) = A ) |