| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nv1.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | nv1.4 |  |-  S = ( .sOLD ` U ) | 
						
							| 3 |  | nv1.5 |  |-  Z = ( 0vec ` U ) | 
						
							| 4 |  | nv1.6 |  |-  N = ( normCV ` U ) | 
						
							| 5 |  | simp1 |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> U e. NrmCVec ) | 
						
							| 6 | 1 4 | nvcl |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( N ` A ) e. RR ) | 
						
							| 8 | 1 3 4 | nvz |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) = 0 <-> A = Z ) ) | 
						
							| 9 | 8 | necon3bid |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) =/= 0 <-> A =/= Z ) ) | 
						
							| 10 | 9 | biimp3ar |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( N ` A ) =/= 0 ) | 
						
							| 11 | 7 10 | rereccld |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( 1 / ( N ` A ) ) e. RR ) | 
						
							| 12 | 1 3 4 | nvgt0 |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( A =/= Z <-> 0 < ( N ` A ) ) ) | 
						
							| 13 | 12 | biimp3a |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> 0 < ( N ` A ) ) | 
						
							| 14 |  | 1re |  |-  1 e. RR | 
						
							| 15 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 16 |  | divge0 |  |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) ) -> 0 <_ ( 1 / ( N ` A ) ) ) | 
						
							| 17 | 14 15 16 | mpanl12 |  |-  ( ( ( N ` A ) e. RR /\ 0 < ( N ` A ) ) -> 0 <_ ( 1 / ( N ` A ) ) ) | 
						
							| 18 | 7 13 17 | syl2anc |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> 0 <_ ( 1 / ( N ` A ) ) ) | 
						
							| 19 |  | simp2 |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> A e. X ) | 
						
							| 20 | 1 2 4 | nvsge0 |  |-  ( ( U e. NrmCVec /\ ( ( 1 / ( N ` A ) ) e. RR /\ 0 <_ ( 1 / ( N ` A ) ) ) /\ A e. X ) -> ( N ` ( ( 1 / ( N ` A ) ) S A ) ) = ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) ) | 
						
							| 21 | 5 11 18 19 20 | syl121anc |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( N ` ( ( 1 / ( N ` A ) ) S A ) ) = ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) ) | 
						
							| 22 | 6 | recnd |  |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. CC ) | 
						
							| 23 | 22 | 3adant3 |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( N ` A ) e. CC ) | 
						
							| 24 | 23 10 | recid2d |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( ( 1 / ( N ` A ) ) x. ( N ` A ) ) = 1 ) | 
						
							| 25 | 21 24 | eqtrd |  |-  ( ( U e. NrmCVec /\ A e. X /\ A =/= Z ) -> ( N ` ( ( 1 / ( N ` A ) ) S A ) ) = 1 ) |