| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nvpncan2.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
nvpncan2.2 |
|- G = ( +v ` U ) |
| 3 |
|
nvpncan2.3 |
|- M = ( -v ` U ) |
| 4 |
|
neg1cn |
|- -u 1 e. CC |
| 5 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
| 6 |
1 2 5
|
nvdi |
|- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ C e. X /\ D e. X ) ) -> ( -u 1 ( .sOLD ` U ) ( C G D ) ) = ( ( -u 1 ( .sOLD ` U ) C ) G ( -u 1 ( .sOLD ` U ) D ) ) ) |
| 7 |
4 6
|
mp3anr1 |
|- ( ( U e. NrmCVec /\ ( C e. X /\ D e. X ) ) -> ( -u 1 ( .sOLD ` U ) ( C G D ) ) = ( ( -u 1 ( .sOLD ` U ) C ) G ( -u 1 ( .sOLD ` U ) D ) ) ) |
| 8 |
7
|
3adant2 |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( -u 1 ( .sOLD ` U ) ( C G D ) ) = ( ( -u 1 ( .sOLD ` U ) C ) G ( -u 1 ( .sOLD ` U ) D ) ) ) |
| 9 |
8
|
oveq2d |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) ( C G D ) ) ) = ( ( A G B ) G ( ( -u 1 ( .sOLD ` U ) C ) G ( -u 1 ( .sOLD ` U ) D ) ) ) ) |
| 10 |
1 5
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ C e. X ) -> ( -u 1 ( .sOLD ` U ) C ) e. X ) |
| 11 |
4 10
|
mp3an2 |
|- ( ( U e. NrmCVec /\ C e. X ) -> ( -u 1 ( .sOLD ` U ) C ) e. X ) |
| 12 |
1 5
|
nvscl |
|- ( ( U e. NrmCVec /\ -u 1 e. CC /\ D e. X ) -> ( -u 1 ( .sOLD ` U ) D ) e. X ) |
| 13 |
4 12
|
mp3an2 |
|- ( ( U e. NrmCVec /\ D e. X ) -> ( -u 1 ( .sOLD ` U ) D ) e. X ) |
| 14 |
11 13
|
anim12dan |
|- ( ( U e. NrmCVec /\ ( C e. X /\ D e. X ) ) -> ( ( -u 1 ( .sOLD ` U ) C ) e. X /\ ( -u 1 ( .sOLD ` U ) D ) e. X ) ) |
| 15 |
14
|
3adant2 |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( -u 1 ( .sOLD ` U ) C ) e. X /\ ( -u 1 ( .sOLD ` U ) D ) e. X ) ) |
| 16 |
1 2
|
nvadd4 |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( ( -u 1 ( .sOLD ` U ) C ) e. X /\ ( -u 1 ( .sOLD ` U ) D ) e. X ) ) -> ( ( A G B ) G ( ( -u 1 ( .sOLD ` U ) C ) G ( -u 1 ( .sOLD ` U ) D ) ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) C ) ) G ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) ) |
| 17 |
15 16
|
syld3an3 |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( ( -u 1 ( .sOLD ` U ) C ) G ( -u 1 ( .sOLD ` U ) D ) ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) C ) ) G ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) ) |
| 18 |
9 17
|
eqtrd |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) ( C G D ) ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) C ) ) G ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) ) |
| 19 |
|
simp1 |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> U e. NrmCVec ) |
| 20 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 21 |
20
|
3expb |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( A G B ) e. X ) |
| 22 |
21
|
3adant3 |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( A G B ) e. X ) |
| 23 |
1 2
|
nvgcl |
|- ( ( U e. NrmCVec /\ C e. X /\ D e. X ) -> ( C G D ) e. X ) |
| 24 |
23
|
3expb |
|- ( ( U e. NrmCVec /\ ( C e. X /\ D e. X ) ) -> ( C G D ) e. X ) |
| 25 |
24
|
3adant2 |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( C G D ) e. X ) |
| 26 |
1 2 5 3
|
nvmval |
|- ( ( U e. NrmCVec /\ ( A G B ) e. X /\ ( C G D ) e. X ) -> ( ( A G B ) M ( C G D ) ) = ( ( A G B ) G ( -u 1 ( .sOLD ` U ) ( C G D ) ) ) ) |
| 27 |
19 22 25 26
|
syl3anc |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) M ( C G D ) ) = ( ( A G B ) G ( -u 1 ( .sOLD ` U ) ( C G D ) ) ) ) |
| 28 |
1 2 5 3
|
nvmval |
|- ( ( U e. NrmCVec /\ A e. X /\ C e. X ) -> ( A M C ) = ( A G ( -u 1 ( .sOLD ` U ) C ) ) ) |
| 29 |
28
|
3adant3r |
|- ( ( U e. NrmCVec /\ A e. X /\ ( C e. X /\ D e. X ) ) -> ( A M C ) = ( A G ( -u 1 ( .sOLD ` U ) C ) ) ) |
| 30 |
29
|
3adant2r |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( A M C ) = ( A G ( -u 1 ( .sOLD ` U ) C ) ) ) |
| 31 |
1 2 5 3
|
nvmval |
|- ( ( U e. NrmCVec /\ B e. X /\ D e. X ) -> ( B M D ) = ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) |
| 32 |
31
|
3adant3l |
|- ( ( U e. NrmCVec /\ B e. X /\ ( C e. X /\ D e. X ) ) -> ( B M D ) = ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) |
| 33 |
32
|
3adant2l |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( B M D ) = ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) |
| 34 |
30 33
|
oveq12d |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A M C ) G ( B M D ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) C ) ) G ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) ) |
| 35 |
18 27 34
|
3eqtr4d |
|- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) M ( C G D ) ) = ( ( A M C ) G ( B M D ) ) ) |