Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nvf.1 | |- X = ( BaseSet ` U ) |
|
nvf.6 | |- N = ( normCV ` U ) |
||
Assertion | nvcl | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvf.1 | |- X = ( BaseSet ` U ) |
|
2 | nvf.6 | |- N = ( normCV ` U ) |
|
3 | 1 2 | nvf | |- ( U e. NrmCVec -> N : X --> RR ) |
4 | 3 | ffvelrnda | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) |