Metamath Proof Explorer


Theorem nvcl

Description: The norm of a normed complex vector space is a real number. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvf.1
|- X = ( BaseSet ` U )
nvf.6
|- N = ( normCV ` U )
Assertion nvcl
|- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR )

Proof

Step Hyp Ref Expression
1 nvf.1
 |-  X = ( BaseSet ` U )
2 nvf.6
 |-  N = ( normCV ` U )
3 1 2 nvf
 |-  ( U e. NrmCVec -> N : X --> RR )
4 3 ffvelrnda
 |-  ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR )