Description: Closure law for the vector addition (group) operation of a normed complex vector space. (Contributed by NM, 23-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvgcl.1 | |- X = ( BaseSet ` U ) |
|
| nvgcl.2 | |- G = ( +v ` U ) |
||
| Assertion | nvgcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvgcl.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvgcl.2 | |- G = ( +v ` U ) |
|
| 3 | 2 | nvgrp | |- ( U e. NrmCVec -> G e. GrpOp ) |
| 4 | 1 2 | bafval | |- X = ran G |
| 5 | 4 | grpocl | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 6 | 3 5 | syl3an1 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |