Metamath Proof Explorer


Theorem nvgcl

Description: Closure law for the vector addition (group) operation of a normed complex vector space. (Contributed by NM, 23-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvgcl.1
|- X = ( BaseSet ` U )
nvgcl.2
|- G = ( +v ` U )
Assertion nvgcl
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X )

Proof

Step Hyp Ref Expression
1 nvgcl.1
 |-  X = ( BaseSet ` U )
2 nvgcl.2
 |-  G = ( +v ` U )
3 2 nvgrp
 |-  ( U e. NrmCVec -> G e. GrpOp )
4 1 2 bafval
 |-  X = ran G
5 4 grpocl
 |-  ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X )
6 3 5 syl3an1
 |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X )